Well-Quasi-Orders in Subclasses of Bounded Treewidth Graphs

  • Michael R. Fellows
  • Danny Hermelin
  • Frances A. Rosamond
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5917)

Abstract

We show that three subclasses of bounded treewidth graphs are well-quasi-ordered by refinements of the minor order. Specifically, we prove that graphs with bounded feedback-vertex-set are well-quasi-ordered by the topological-minor order, graphs with bounded vertex-covers are well-quasi-ordered by the subgraph order, and graphs with bounded circumference are well-quasi-ordered by the induced-minor order. Our results give an algorithm for recognizing any graph family in these classes which is closed under the corresponding minor order refinement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability. A survey. BIT Numerical Mathematics 25(1), 2–23 (1985)MATHMathSciNetGoogle Scholar
  2. 2.
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for problems of bounded width: Hardness for the W-hierarchy. In: Proceedings of the 26th annual ACM Symposium on Theory of Computing (STOC), pp. 449–458 (1994)Google Scholar
  4. 4.
    Corneil, D.G., Keil, J.M.: A dynamic programming approach to the dominating set problem on k-trees. SIAM Journal on Algebraic and Discrete Methods 8(4), 535–543 (1987)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of finite graphs. Information and Computation 85(1), 12–75 (1990)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ding, G.: Subgraphs and well-quasi-ordering. Journal of Graph Theory 16(5), 489–502 (1992)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Fellows, M.R., Langston, M.A.: Fast self-reduction algorithms for combinatorial problems of VLSI design. In: Proc. of the 3rd Aegean Workshop On Computing (AWOC), pp. 278–287 (1988)Google Scholar
  9. 9.
    Fellows, M.R., Langston, M.A.: On well-paritial-order theory and its application to combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics 5 (1992)Google Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the American Mathematical Society 95, 210–225 (1960)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Menger, K.: Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10, 96–115 (1927)MATHGoogle Scholar
  13. 13.
    Nash-Williams, C.S.J.A.: On well-quasi-ordering finite trees. Mathematical Proceedings of the Cambridge Philosophical Society 59(4), 833–835 (1963)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  15. 15.
    Thomas, R.: Well-quasi-ordering infinite graphs with forbidden finite planar minor. Transactions of the American Mathematical Society 312(1), 67–76 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael R. Fellows
    • 1
  • Danny Hermelin
    • 2
  • Frances A. Rosamond
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceThe University of NewcastleCalaghanAustralia
  2. 2.Department of Computer ScienceUniversity of HaifaMount Carmel, HaifaIsrael

Personalised recommendations