Regret minimization has proven to be a very powerful tool in both computational learning theory and online algorithms. Regret minimization algorithms can guarantee, for a single decision maker, a near optimal behavior under fairly adversarial assumptions. I will discuss a recent extensions of the classical regret minimization model, which enable to handle many different settings related to job scheduling, and guarantee the near optimal online behavior.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yishay Mansour
    • 1
  1. 1.Blavatnik School of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations