On Contracting Graphs to Fixed Pattern Graphs

  • Pim van ’t Hof
  • Marcin Kamiński
  • Daniël Paulusma
  • Stefan Szeider
  • Dimitrios M. Thilikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5901)

Abstract

For a fixed graph H, the H-Contractibility problem asks if a graph is H-contractible, i.e., can be transformed into H via a series of edge contractions. The computational complexity classification of this problem is still open. So far, H has a dominating vertex in all cases known to be polynomially solvable, whereas H does not have such a vertex in all cases known to be NP-complete. Here, we present a class of graphs H with a dominating vertex for which H-Contractibility is NP-complete. We also present a new class of graphs H for which H-Contractibility is polynomially solvable. Furthermore, we study the (H,v)-Contractibility problem, where v is a vertex of H. The input of this problem is a graph G and an integer k. The question is whether G is H-contractible such that the “bag” of G corresponding to v contains at least k vertices. We show that this problem is NP-complete whenever H is connected and v is not a dominating vertex of H.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, M., Gudmundsson, J., Levcopoulos, C.: Restricted Mesh Simplification Using Edge Contraction. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 196–204. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Brouwer, A.E., Veldman, H.J.: Contractibility and NP-Completeness. Journal of Graph Theory 11, 71–79 (1987)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cheng, S., Dey, T., Poon, S.: Hierarchy of Surface Models and Irreducible Triangulations. Computational Geometry Theory and Applications 27, 135–150 (2004)MATHMathSciNetGoogle Scholar
  4. 4.
    Cong, J., Lim, S.K.: Edge Separability-Based Circuit Clustering with Application to Multilevel Circuit Partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 23, 346–357 (2004)CrossRefGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The Complexity of Induced Minors and Related Problems. Algorithmica 13, 266–282 (1995)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Co., New York (1979)MATHGoogle Scholar
  8. 8.
    Harel, D., Koren, Y.: On Clustering Using Random Walks. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 18–41. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Hoede, C., Veldman, H.J.: Contraction Theorems in Hamiltonian Graph Theory. Discrete Mathematics 34, 61–67 (1981)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing 20, 359–392 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Levin, A., Paulusma, D., Woeginger, G.J.: The Computational Complexity of Graph Contractions I: Polynomially Solvable and NP-Complete Cases. Networks 51, 178–189 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Levin, A., Paulusma, D., Woeginger, G.J.: The Computational Complexity of Graph Contractions II: Two Tough Polynomially Solvable Cases. Networks 52, 32–56 (2008)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Robertson, N., Seymour, P.D.: Graph Minors. XIII. The Disjoint Paths Problem. Journal of Combinatorial Theory, Series B 63, 65–110 (1995)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pim van ’t Hof
    • 1
  • Marcin Kamiński
    • 2
  • Daniël Paulusma
    • 1
  • Stefan Szeider
    • 1
  • Dimitrios M. Thilikos
    • 3
  1. 1.School of Engineering and Computing SciencesUniversity of Durham, Science LaboratoriesDurhamEngland
  2. 2.Computer Science DepartmentUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Department of MathematicsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations