Perfect Matching for Biconnected Cubic Graphs in O(n log2n) Time

  • Krzysztof Diks
  • Piotr Stanczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5901)


The main result of this paper is a new perfect matching algorithm for biconnected cubic graphs. The algorithm runs in time O(n log2 n). It is also possible, by applying randomized data structures, to get O(n logn loglog3 n) average time. Our solution improves the one given by T. Biedl et al. [3]. The algorithm of Biedl et al. runs in time O(n log4 n). We use a similar approach. However, thanks to exploring some properties of biconnected cubic graphs we are able to replace complex fully-dynamic biconnectivity data structure with much simpler, dynamic graph connectivity and dynamic tree data structures. Moreover, we present a significant modification of the new algorithm which makes application of a decremental dynamic graph connectivity data structure possible, instead of one supporting the fully dynamic graph connectivity. It gives hope for further improvements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a Maximum Cardinality Matching in a Bipartite Graph in Time \(O(n^{1.5}\sqrt{m/\log n})\). Information Processing Letters 37, 237–240 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Biedl, T.C.: Linear Reductions of Maximum Matching. In: SODA 2001, pp. 825–826 (2001)Google Scholar
  3. 3.
    Biedl, T., Bose, P., Demaine, E., Lubiw, A.: Efficient Algorithms for Petersen’s Matching Theorem. Journal of Algorithms 38, 110–134 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Frink, O.: A Proof of Petersen’s Theorem. The Annals of Mathematics, Series 2 27(4), 491–493 (1926)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Henzinger, M., King, V.: Fully Dynamic 2-Edge Connectivity Algorithm in Polylogarithmic Time per Operation. Technical Note, Digital Equipment Corp., Systems Research Ctr. (June 12, 1997)Google Scholar
  6. 6.
    Holm, J., De Lichtenserg, K., Thorup, M.: Poly-Logarithmic Deterministic Fully-Dynamic Algorithms for Connectivity, Minimum Spanning Tree, 2-Edge and Biconnectivity. Journal of the ACM (JACM) 48, 723–760 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Lovasz, L., Plummer, M.D.: Matching Theory. North-Holland Publishing Co., Amsterdam (1986)zbMATHGoogle Scholar
  8. 8.
    Micali, S., Vazirani, V.V.: An \(O(\sqrt{n}m)\) Algorithm for Finding Maximum Matching in General Graphs. In: Proceedings of FOCS 1980, pp. 17–27. IEEE, Los Alamitos (1980)Google Scholar
  9. 9.
    Petersen, J.: Die Theorie der regulären Graphs. Acta Mathematica 15, 193–220 (1891)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Karpiński, M., Rytter, W.: Fast Parallel Algorithms for Graph Matching Problem. Oxford University Press, Oxford (1998)Google Scholar
  11. 11.
    Schrijver, A.: Combinatorial Optimization – Polyhedra and Efficiency. Parts II and III. Springer, Berlin (2003)Google Scholar
  12. 12.
    Schrijver, A.: Bipartite Edge Coloring in Om) Time. SIAM Journal on Computing 28(3), 841–846 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. In: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 114–122 (1981)Google Scholar
  14. 14.
    Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1983)Google Scholar
  15. 15.
    Thorup, M.: Near-Optimal Fully-Dynamic Graph Connectivity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 343–350 (2000)Google Scholar
  16. 16.
    Thorup, M.: Decremental Dynamic Connectivity. In: Proceedings of the 8th ACM Symposium on Discrete Algorithms (SODA), pp. 305–313 (1997)Google Scholar
  17. 17.
    Mucha, M.: Finding Maximum Matchings via Gaussian Elimination. PhD Thesis, Warsaw University, Faculty of Mathematics, Informatics and MechanicsGoogle Scholar
  18. 18.
    Harvey, N.J.A.: Algebraic Algorithms for Matching and Matroid Problems. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyGoogle Scholar
  19. 19.
    Greenlaw, R., Petreschi, R.: Cubic Graphs. ACM Computing Surveys (CSUR) 27(4), 471–495 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Krzysztof Diks
    • 1
  • Piotr Stanczyk
    • 1
  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations