A Rule Format for Unit Elements

  • Luca Aceto
  • Anna Ingolfsdottir
  • MohammadReza Mousavi
  • Michel A. Reniers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5901)

Abstract

This paper offers a meta-theorem for languages with a Structural Operational Semantics (SOS) in the style of Plotkin. Namely, it proposes a generic rule format for SOS guaranteeing that certain constants act as left- or right-unit elements for a set of binary operators. We show the generality of our format by applying it to a wide range of operators from the literature on process calculi.

Keywords

Binary Operator Unit Element Function Symbol Rule Format Operational Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Birgisson, A., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule Formats for Determinism and Idempotence. In: FSEN 2009. LNCS, vol. 5961. Springer, Heidelberg (to appear, 2010)Google Scholar
  2. 2.
    Aceto, L., Fokkink, W.J., Verhoef, C.: Structural Operational Semantics. In: Handbook of Process Algebra, ch. 3, pp. 197–292. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  3. 3.
    Aceto, L., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: A Rule Format for Unit Elements. Tech. Rep. CSR-0913, Eindhoven University of Technology (2009)Google Scholar
  4. 4.
    Baeten, J.C.M., Bergstra, J.: Mode Transfer in Process Algebra. Tech. Rep. CSR-0001, Eindhoven University of Technology (2000)Google Scholar
  5. 5.
    Bergstra, J.A., Klop, J.W.: Fixedpoint Semantics in Process Algebra. Tech. Rep. IW 206/82, Center for Mathematics, Amsterdam (1982)Google Scholar
  6. 6.
    Cranen, S., Mousavi, M.R., Reniers, M.A.: A Rule Format for Associativity. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 447–461. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    van Glabbeek, R.J.: The Linear Time - Branching Time Apectrum I. In: Handbook of Process Algebra, ch. 1, pp. 3–100. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  8. 8.
    Hennessy, M., Milner, R.: Algebraic Laws for Non-Determinism and Concurrency. J. ACM 32(1), 137–161 (1985)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  10. 10.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  11. 11.
    Mousavi, M.R., Reniers, M.A., Groote, J.F.: A Syntactic Commutativity Format for SOS. IPL 93, 217–223 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS Formats and Meta-Theory: 20 Years after. TCS 373(3), 238–272 (2007)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Plotkin, G.D.: A Structural Approach to Operational Semantics. JLAP 60-61, 17–140 (2004)Google Scholar
  14. 14.
    Plotkin, G.D.: A Powerdomain for Countable Non-Determinism (extended abstract). In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 418–428. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  15. 15.
    Verhoef, C.: A Congruence Theorem for Structured Operational Semantics with Predicates and Negative Premises. Nordic Journal of Computing 2(2), 274–302 (1995)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Luca Aceto
    • 1
  • Anna Ingolfsdottir
    • 1
  • MohammadReza Mousavi
    • 2
  • Michel A. Reniers
    • 2
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityReykjavikIceland
  2. 2.Department of Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations