First Scientific Results from the ALHAMBRA: Survey

  • A. Fernández-Soto
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)


The Advanced, Large, Homogeneous Area, Medium-Band Redshift Astronomical (ALHAMBRA)–Survey is mapping eight different areas in the Northern sky, totalling 4 square degrees, aiming at obtaining a photometric redshift catalogue of over 600,000 galaxies with a median redshift \( \mathop z\limits^ - \, \approx \,0.7 \). This sample will be used to measure cosmic evolution at large, including the processes of galaxy formation and differentiation, large-scale structure, and the history of star formation. The photometric redshift depth, completeness, and accuracy are better than in any previous similar effort, reaching δz ≈ 0. 015(1 + z) for 90% of the objects with AB(I) < 24. We present in this conference the present status of the project, including the observations, data analysis, and the first preliminary scientific results obtained with a small fraction of the total survey.


Star Formation Cosmic Evolution Magnitude Limit Photometric Redshift Spectroscopic Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the decisive support given by the ALHAMBRA Extended Team to the project (see for the details regarding the project implementation and organization). We also wish to acknowledge the Calar Alto Director and staff for their strong support and warm assistance for a fruitful observation. The Ministerio de Ciencia e Innovación (formerly Ministerio de Educación y Ciencia) is acknowledged for its support through the grants AYA2002-12685-E and AYA2004-20014-E, and project AYA2006-14056.


  1. 1.
    Adelman-McCarthy, J.K., et al., ApJS 175, 297 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Alfaro, E., et al., in preparation (2009)Google Scholar
  3. 3.
    Baum, W.A., 1962, in IAU Symp. 15, 390 (1962)ADSGoogle Scholar
  4. 4.
    Benítez, N., ApJ 536, 571 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Benítez, N., et al., ApJ 692, 5 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Bertin, E., Arnouts, S., A&AS 117, 393 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Bertin, E., et al., Astronomical Data Analysis Software and Systems XI 281, 228 (2002)Google Scholar
  8. 8.
    Coleman, G.D., Wu, C.C., Weedman, D.W., ApJS 43, 393 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    Colless, M., et al., MNRAS 328, 1039 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Cutri, R.M., et al., The IRSA 2MASSAll-Sky Point Source Catalog (2003)Google Scholar
  11. 11.
    Fernández-Soto, A., Lanzetta, K.M., Yahil, A., ApJ 513, 34 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Gwyn, S.D.J., Hartwick, F.D.A., ApJ 468, L77 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Kinney, A.L., et al., ApJS 86, 5 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    Lanzetta, K.M., Yahil, A., Fernández-Soto, A., Nature 381, 759 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Moles, M., et al., AJ 136, 1325 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Monet, D.G., et al., AJ 125, 984 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Sánchez, S.F., et al., in preparation (2009)Google Scholar
  18. 18.
    Sawicki, M.J., Lin, H., Yee, H.K.C., AJ 113, 1 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Stanford, S.A., Eisenhardt, P.R.M., Dickinson, M., ApJ 450, 512 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Valdes, F.G., in Automated Data Analysis in Astronomy, 309 (2002)Google Scholar
  21. 21.
    Wolf, C., et al., A&A 365, 681 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Wolf, C., et al., A&A 421, 913 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Instituto de Fsica de Cantabria (CSIC-UC)SantanderSPAIN

Personalised recommendations