Advertisement

Computational Intelligence Methods for Data Analysis and Mining of eLearning Activities

  • Pavla Dráždilová
  • Gamila Obadi
  • Kateřina Slaninová
  • Shawki Al-Dubaee
  • Jan Martinovič
  • Václav Snášel
Part of the Studies in Computational Intelligence book series (SCI, volume 273)

Abstract

Enhancing the the effectiveness of web-based eduction has become one of the most important concerns within both educational engineering and information system fields. The development of information technologies has contributed to the growth in elearning as an important education method. This learning environment enables learners to participate in ’any time, any place’ personalized training. It has been known that the application of data mining and computational intelligent approaches can provide better learning environments, and in their effort to participate in this field, the authors introduced this study which consists in its first part of a survey of the applications of data mining and computational intelligence in web based education during (2004-2009), and the second part is a case study that aims to analyze students’ activities performed in a Learning Management System.

Keywords

Data Mining Association Rule Soft Computing Association Rule Mining Data Mining Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, S., Nakata, S., Kigoshi, T., Mochizuki, H.: Designing and developing multilingual e-learning materials: Tufs language education pronunciation module - introduction of a system for learning japanese language pronunciation. In: ICALT, p. 462 (2003)Google Scholar
  2. 2.
    Abonyi, J., Balasz, F., Abraham, A.: Computational intelligence in data mining. Informatica 29, 3–12 (2005)Google Scholar
  3. 3.
    Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: SIGMOD Conference, pp. 207–216 (1993)Google Scholar
  4. 4.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT Press (1996)Google Scholar
  5. 5.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of International Conference on Data Engineering (ICDE 1995), pp. 3–14. IEEE Computer Society Press, Los Alamitos (1995)CrossRefGoogle Scholar
  6. 6.
    Al-Dubaee, S.A., Ahmad, N.: The bior 3.1 wavelet transform in multilingual web information retrieval. In: DMIN, pp. 707–713 (2008)Google Scholar
  7. 7.
    Al-Dubaee, S.A., Ahmad, N.: New direction of applied wavelet transform in multilingual web information retrieval. In: FSKD, (4), pp. 198–202 (2008)Google Scholar
  8. 8.
    Al-Dubaee, S.A., Ahmad, N.: A novel multilingual web information retrieval method using multiwavelet transform. UbiCC 3(3) (2008)Google Scholar
  9. 9.
    Al-Dubaee, S.A., Snášel, V., Ahmad, N.: Wavelet, multiwavelet and multilingualism on the internet. In: IKE (2009)Google Scholar
  10. 10.
    Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2008)CrossRefGoogle Scholar
  11. 11.
    Antunes, C.: Acquiring background knowledge for intelligent tutoring systems. In: Proceedings of Educational Data Mining 2008: 1st International Conference on Educational Data Mining, pp. 18–27 (2008)Google Scholar
  12. 12.
    Antunes, C.M., Oliveira, A.L.: Inference of Sequential Association Rules Guided by Context-Free Grammars. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 289–293. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge (2002)Google Scholar
  14. 14.
    Bandyopadhyay, S., Muthy, C.A.: Pattern clasification using genetic algorithms. Pattern Recognition Letters 16, 801–808 (1995)CrossRefGoogle Scholar
  15. 15.
    Benôit, G.: Data mining. Annual Review of Information Science and Technology 36, 265–310 (2002)CrossRefGoogle Scholar
  16. 16.
    Berge, Z.L.: Facilitating computer conferencing: Recommendations from the field. Educational Technology 35(1), 22–30 (1995)Google Scholar
  17. 17.
    Berry, M.W., Browne, M.: Lecture notes in data mining, ch. 14. World Scientific, Singapore (2006)MATHGoogle Scholar
  18. 18.
    Blanchard, E., Razaki, R., Frasson, C.: Cross-cultural adaptation of elearning contents: a methodology. In: International Conference on E-Learning (2005)Google Scholar
  19. 19.
    Bouguessa, M., Dumoulin, B., Wang, S.: Identifying authoritative actors in question-answering forums: the case of yahoo! answers. In: KDD 2008: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 866–874. ACM, New York (2008)CrossRefGoogle Scholar
  20. 20.
    Burdescu, D.D., Mihaescu, M.C., Logofatu, B.: Employing bayes classifier for improving learner’s proficiency. In: International Conference on Internet and Web Applications and Services, pp. 38–42 (2008), http://doi.ieeecomputersociety.org/10.1109/ICIW.2008.16
  21. 21.
    Castro, F., Nebot, A., Mugica, F.: A soft computing decision support framework to improve the e-learning experience. In: SpringSim, pp. 781–788 (2008)Google Scholar
  22. 22.
    Castro, F., Vellido, A., Nebot, A.: Minguillon: Finding relevant features to characterize student behavior on an e-learning system. In: Hamid, R.A. (ed.) FECS 2005, pp. 210–216 (2005)Google Scholar
  23. 23.
    Castro, F., Vellido, A., Nebot, A., Mugica, F.: Applying data mining techniques to e-learning problems. Studies in Computational Intelligence(SCI), vol. 62 (2007)Google Scholar
  24. 24.
    Chen, C.M., Hsieh, Y.L., Hsu, S.H.: Mining learner profile utilizing association rule for web-based learning diagnosis. Expert Syst. Appl. 33(1), 6–22 (2007)CrossRefGoogle Scholar
  25. 25.
    Cho, Y.I.: Intelligent automatic community grouping system by multiagents. Artificial Life and Robotics 12(1-2), 284–290 (2008)CrossRefGoogle Scholar
  26. 26.
    Daradoumis, T., Martinez-Mones, A., Xhafa, F.: A layered framework for evaluating on-line collaborative learning interactions. International Journal of Human-Computer Studies 64(7), 622–635 (2006)CrossRefGoogle Scholar
  27. 27.
    Denev, D., Boichev, A., Nedelchev, P.: Multilingual support of e-learning systems: The bulgarian contribution. In: CompSysTech 2006 (2006)Google Scholar
  28. 28.
    Dolog, P., Gavriloaie, R., Nejdl, W., Brase, J.: Integrating adaptive hypermedia techniques and open RDF-based environments. In: WWW - Alternate Paper Tracks (2003)Google Scholar
  29. 29.
    Eberhart, R.C., Shi, Y.: Computational Intelligence: An Introduction. Morgan Kaufmann, San Francisco (2007)Google Scholar
  30. 30.
    Engelbrecht, A.P.: Computational Intelligence: An Introduction. J. Wiley & Sons Inc., Chichester (2007)Google Scholar
  31. 31.
    Falkenauer, A.A.: A survey of Evolutionary Algorithms for data Mining and Knowledge Discovery. In: Ghosh, A., Tsutsui, S. (eds.), pp. 819–845. Springer, New York (2003)Google Scholar
  32. 32.
    Fayyad, U., Piatetsky-Sshapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Magazine 17, 37–54 (1996)Google Scholar
  33. 33.
    Fazlollahtabarand, H., Mahdavi, I.: User/tutor optimal learning path in e-learning using comprehensive neuro-fuzzy approach. Education Research Review Elsevier 4(2), 142–155 (2009)CrossRefGoogle Scholar
  34. 34.
    Fernández, C.A., López, J.V., Montero, F., Gonzalez, P.: Adaptive interaction multi-agent systems in e-learning/e-teaching on the web. In: Cueva Lovelle, J.M., Rodríguez, B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722, pp. 144–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  35. 35.
    Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in databases: An overview. In: Knowledge Discovery in Databases, pp. 1–30. AAAI/MIT Press (1991)Google Scholar
  36. 36.
    García, E., Romero, C., Ventura, S., Calders, T.: Drawbacks and solutions of applying association rule mining in learning management systems. In: Proceedings of the International Workshop on Applying Data Mining in e-Learning 2007. IEEE Press, Los Alamitos (2007)Google Scholar
  37. 37.
    García, E., Romero, C., Ventura, S., Castro, C.D.: An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering. User Modeling and User-Adapted Interaction 19(1-2), 99–132 (2009)CrossRefGoogle Scholar
  38. 38.
    Garofalakis, M., Rastogi, R., Shim, K.: Mining sequential patterns with regular expression constraints. IEEE Transactions on Knowledge and Data Engineering 14, 530–552 (2002)CrossRefGoogle Scholar
  39. 39.
    Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: ICDE 1999: Proceedings of the 15th International Conference on Data Engineering, p. 106. IEEE Computer Society, Washington (1999)Google Scholar
  40. 40.
    Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: Freespan: Frequent pattern-projected sequential pattern mining. In: Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining (KDD 2000), pp. 355–359. ACM, New York (2000)CrossRefGoogle Scholar
  41. 41.
    Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. In: Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2001), http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20%&path=ASIN/026208290X Google Scholar
  42. 42.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn., p. 842. IEEE Press, Los Alamitos (1998)Google Scholar
  43. 43.
    Hrad, J., Zeman, T., Hájek, J.: Multilanguage e-learning course for industrial automation. In: Learning to Live in the Knowledge Society, pp. 371–372 (2008)Google Scholar
  44. 44.
    Hwang, G.J., Huang, T.C.K., Tseng, C.R.: A group-desigion approach for evaluating educational web sites. Computers & Education 42, 65–86 (2004)CrossRefGoogle Scholar
  45. 45.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Survey 31(3), 264–323 (1999)CrossRefGoogle Scholar
  46. 46.
    Jeong, H., Biswas, G.: Mining student behavior models in learning-by-teaching environments. In: Baker, R.S.J.d., Barnes, T., Beck, J.E. (eds.) Proceeings of Educational Data Mining 2008: 1st International Conference on Educational Data Mining, pp. 127–136 (2008)Google Scholar
  47. 47.
    Jun, L., Renhou, L., Qinhua, Z.: Study on the personality mining method for learners in network learning. Journal of Xian Jiaotong University, 575–576 (2004)Google Scholar
  48. 48.
    Kay, J., Masionneuve, N., Yacef, K., Zaïane, O.: Mining patterns of events in students’ teamwork data. In: Proceedings of the Workshop on Educational Data Mining at the 8th International Conference on Intelligent Tutoring Systems (ITS 2006), pp. 45–52 (2006)Google Scholar
  49. 49.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Klösgen, W., Zytkow, J.M. (eds.): Handbook of data mining and knowledge discovery. Oxford University Press, Inc., New York (2002)MATHGoogle Scholar
  51. 51.
    Korfiatis, N., Poulos, M., Bokos, G.: Evaluating authoritative sources using social networks: An insight from wikipedia. Online Information Review 30(3), 252–262 (2006), http://www.korfiatis.info/papers/OISJournal_final.pdf CrossRefGoogle Scholar
  52. 52.
    Kubon, V., Spousta, M.: Multilingual approach to e-learning from a monolingual perspective. In: FLAIRS Conference, pp. 229–230 (2008)Google Scholar
  53. 53.
    Kumar, A.: Rule-based adaptive problem generation in programming tutors and its evaluation. In: The 12th International Conference on Artificial Intelligence in Education, pp. 36–44 (2005)Google Scholar
  54. 54.
    Kuncheva, L.I., Jain, L.C.: Designing classifier fusion systems by genetic algorithms. IEEE Transaction on Evolutionary Computation 33, 351–373 (2000)Google Scholar
  55. 55.
    Lee, S.H., Kim, P.J., Ahn, Y.Y., Jeong, H.: Googling hidden interactions: Web search engine based weighted network construction (2007), http://www.citebase.org/abstract?id=oai:arXiv.org:0710.3268
  56. 56.
    Li, L., Otsuka, S., Kitsuregawa, M.: Query recommendation using large-scale web access logs and web page archive. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 134–141. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  57. 57.
    Lykourentzou, I., Giannoukos, I., Mpardis, G., Nikolopoulos, V., Loumos, V.: Early and dynamic student achievement prediction in e-learning courses using neural networks. Journal of the American Society for Information Science and Technology 60(2), 372–380 (2009)CrossRefGoogle Scholar
  58. 58.
    Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining of Knowledge Discovery 1(3), 259–289 (1997)CrossRefGoogle Scholar
  59. 59.
    Martin-Bautista, M.J., Vila, M.A.: A survey of genetic feature selection in mining issues. In: Proceeding Congress on Evolutionary Computation (CEC 1999), pp. 1314–1321 (1999)Google Scholar
  60. 60.
    Martinovič, J., Dráždilová, P., Slaninová, K., Snášel, V.: Relation analysis in elearning. In: International Conference on Computer Information Systems and Industrial Management Applications, pp. 133–138. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  61. 61.
    McLure-Wasko, M., Faraj, S.: Why should i share? examining social capital and knowledge contribution in electronic networks. MIS Quarterly 29(1), 35–57 (2005)Google Scholar
  62. 62.
    McPherson, M., Nunes, M.B.: The role of tutors as an integral part of online learning support (2009), http://www.eurodl.org/materials/contrib/2004/Maggie_MsP.html
  63. 63.
    Minaei-Bidgoli, B., Punch, W.F.: Using Genetic Algorithms for Data Mining Optimization in an Educational Web-Based System. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  64. 64.
    Mitra, S., Acharya, T.: Data Mining Multimedia, Soft Computing, and Bioinformatics. J. Wiley & Sons Inc., Chichester (2003)Google Scholar
  65. 65.
    Monachesi, P., Lemnitzer, L., Simov, K.I.: Language technology for elearning. In: EC-TEL, pp. 667–672 (2006)Google Scholar
  66. 66.
    Morales, C.R., Pérez, A.R.P., Soto, S.V., Martínez, C.H., Gómez, A.Z.: Using sequential pattern mining for links recommendation in adaptive hypermedia educational systems. In: Proceedings of 5th international Conference on Multimedia and Information and Communication Technologies in Education, M-CITE 2006 (2006)Google Scholar
  67. 67.
    Neji, M., Ben, A.M.: Agent-based collaborative affective e-learning framework. The Electronic Journal of e-Learning 5(2), 123–134 (2007)Google Scholar
  68. 68.
    Pahl, C., Donnellan, C.: Data mining technology for the evaluation of web-based teaching and learning systems. In: Proceedings of the congress e- learning (2003)Google Scholar
  69. 69.
    Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-c.: Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of 17th International Conference on Data Engineering (ICDE 2001), pp. 215–224 (2001)Google Scholar
  70. 70.
    Ribeiro, B., Cardoso, A.: Behavior pattern mining during the evaluation phase in an e-learning course. In: Proceeings of International Conference on Engineering and Education (2007)Google Scholar
  71. 71.
    Romero, C., González, P., Ventura, S., del Jesus, M.J., Herrera, F.: Evolutionary algorithms for subgroup discovery in e-learning: A practical application using moodle data. Expert Syst. Appl. 36(2), 1632–1644 (2009)CrossRefGoogle Scholar
  72. 72.
    Romero, C., Gutiérrez, S., Freire, M., Ventura, S.: Mining and visualizing visited trails in web-based educational systems. In: Proceedings of Educational Data Mining 2008: 1st International Conference on Educational Data Mining (2008)Google Scholar
  73. 73.
    Romero, C., Ventura, S. (eds.): Data Mining in E-Learning. WIT Press, Southhampton (2006)Google Scholar
  74. 74.
    Romero, C., Ventura, S.: Data Mining in E-learning. WIT Press, Southampton (2006)Google Scholar
  75. 75.
    Romero, C., Ventura, S., Garcia, E.: Data mining in course management systems: Moodle case study and tutorial. Computers & Education 51(1), 368–384 (2008), http://dx.doi.org/10.1016/j.compedu.2007.05.016 CrossRefGoogle Scholar
  76. 76.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. In: Information Processing and Management, pp. 513–523 (1988)Google Scholar
  77. 77.
    Scheffer, T.: Finding association rules that trade support optimally against confidence. Intell. Data Anal. 9(4), 381–395 (2005)Google Scholar
  78. 78.
  79. 79.
    Shepherd, C.: In search of the perfect e-tutor (2009), http://www.fastrak-consulting.co.uk/tactix/features/perfect_etutor.htm
  80. 80.
    Simov, K.I., Osenova, P.: Bulqa: Bulgarian-bulgarian question answering at clef 2005. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 517–526. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  81. 81.
    Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  82. 82.
    Stathacopoulou, G.D., Grigoriadou, M.: Neural network-based fuzzy modeling of the student in intelligent tutoring systems. In: International Joint Conference on Neural Networks, pp. 3517–3521 (1999)Google Scholar
  83. 83.
    Sun, S., Joy, M., Griffiths, N.: The use of learning objects and learning styles in a multi-agent education system. In: Proceedings of the World Conference on Educational Multimedia, Hypermedia and Telecommunications, AACE, pp. 3403–3410 (2005)Google Scholar
  84. 84.
    Tao, Y., Zu, D., Li, X., Du, P.: A fuzzy aggregation-based reputation model for e-learning exploitation of public domain resources. In: 4th International ICSC Symposia on Soft-Computing and Intelligent Systems for Industry (2001)Google Scholar
  85. 85.
    Tao, Y., Zu, D., Li, X., Du, P.: A fuzzy logic based speech extraction approach for e-learning content production. In: ICALIP 2008, pp. 298–302 (2009)Google Scholar
  86. 86.
    Thuillard, M.: Wavelet in Soft Computing. Word Scientific series in Robotics and intelligent systems, Singapore, vol. 25 (2001)Google Scholar
  87. 87.
    Thuillard, M.: Adaptive multiresolution and wavelet based search methods. International Journal of Intelligent Systems 19, 303–313 (2004)MATHCrossRefGoogle Scholar
  88. 88.
    Tzouveli, P., Mylonas, P., Kollias, S.: An intelligent e-learning system based on learner profiling and learning resources adaptation. Comput. Educ. 51(1), 224–238 (2008)CrossRefGoogle Scholar
  89. 89.
  90. 90.
  91. 91.
  92. 92.
  93. 93.
  94. 94.
  95. 95.
  96. 96.
  97. 97.
  98. 98.
  99. 99.
  100. 100.
  101. 101.
  102. 102.
  103. 103.
  104. 104.
  105. 105.
  106. 106.
    Verdú, E., Verdú, M.J., Regueras, L.M., de Castro, J.P.: Intercultural and multilingual e-learning to bridge the digital divide. In: Human.Society@Internet, pp. 260–269 (2005)Google Scholar
  107. 107.
    Vialardi, C., Bravo, J., Ortigosa, A.: Improving aeh courses through log analysis. J. UCS 14(17), 2777–2798 (2008)Google Scholar
  108. 108.
    Wachter, R.M., Gupta, J.N.D., Quaddus, M.A.: It takes a village: Virtual communities in supporting of education. International Journal of Information Management 20(6), 473–489 (2000)CrossRefGoogle Scholar
  109. 109.
    Wang, W., Weng, J.F., Su, J.M., Tseng, S.S.: Learning portfolio analysis and mining in scorm compliant environment. In: 34th Annual Frontiers in Education, FIE 2004, vol. 1, pp. 17–24 (2004)Google Scholar
  110. 110.
    Wickramasinghe, N., Gupta, J.N.D., Sharma, S.K.: Creating knowledge-based healthcare organizations, ch. 7. Idea Group (2004)Google Scholar
  111. 111.
    Yang, S.J.H., Chen, I.Y.L., Kinshuk, Chen, N.S.: Enhancing the quality of e-learning in virtual learning communities by finding quality learning content and trustworthy collaborators. Educational Technology & Society 10(2), 12 (2007)CrossRefGoogle Scholar
  112. 112.
    Yin, C.Y., Luo, Q.: Personality mining system in e-learning by using improved association rules. In: 2007 International Conference on Machine Learning and Cybernetics, vol. 7, pp. 4130–4134 (2007), doi:10.1109/ICMLC.2007.4370869Google Scholar
  113. 113.
    Yu, P., Own, C., Lin, L.: On learning behavior analysis of web based interactive environment. In: Proceedings of ICCEE (2001)Google Scholar
  114. 114.
    Zaiane, O., Luo, J.: Web usage mining for a better web-based learning environment. In: Proceedings of conference on advanced technology for education, pp. 60–64 (2001)Google Scholar
  115. 115.
    Zakrzewska, D.: Cluster analysis for users’ modeling in intelligent e-learning systems. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 209–214. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  116. 116.
    Zakrzewska, D.: Using clustering technique for students’ grouping in intelligent e-learning systems. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 403–410. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  117. 117.
    Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure and algorithms. In: WWW 2007: Proceedings of the 16th international conference on World Wide Web, pp. 221–230. ACM Press, New York (2007), http://portal.acm.org/citation.cfm?id=1242603 CrossRefGoogle Scholar
  118. 118.
    Zhu, F., Ip, H.H.-S., Fok, A.W.P., Cao, J.: Peres: A personalized recommendation education system based on multi-agents & scorm. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 31–42. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  119. 119.
    Zorrilla, M., Menasalvas, E., Marín, D., Mora, E., Segovia, J.: Web Usage Mining Project for Improving Web-Based Learning Sites. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 205–210. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pavla Dráždilová
    • 1
  • Gamila Obadi
    • 1
  • Kateřina Slaninová
    • 1
  • Shawki Al-Dubaee
    • 1
  • Jan Martinovič
    • 1
  • Václav Snášel
    • 1
  1. 1.Department of Computer ScienceFEECS, VŠB - Technical University of OstravaOstravaCzech Republic

Personalised recommendations