Using SAT-Solvers to Compute Inference-Proof Database Instances

  • Cornelia Tadros
  • Lena Wiese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5939)


An inference-proof database instance is a published, secure view of an input instance containing secret information with respect to a security policy and a user profile. In this paper, we show how the problem of generating an inference-proof database instance can be represented by the partial maximum satisfiability problem. We present a prototypical implementation that relies on highly efficient SAT-solving technology and study its performance in a number of test cases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argelich, J., Li, C.M., Manyà, F., Planes, J.: MaxSAT evaluation,
  2. 2.
    Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a decidable relational submodel. Annals of Mathematics and Artificial Intelligence 50(1-2), 39–77 (2007)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Biskup, J., Wiese, L.: Preprocessing for controlled query evaluation with availability policy. Journal of Computer Security 16(4), 477–494 (2008)Google Scholar
  4. 4.
    Biskup, J., Wiese, L.: Combining consistency and confidentiality requirements in first-order databases. In: Samarati, P., Yung, M., Martivelli, F., Andagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 121–134. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Cuppens, F., Gabillon, A.: Cover story management. Data & Knowledge Engineering 37(2), 177–201 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Heras, F., Larrosa, J., de Givry, S., Schiex, T.: 2006 and 2007 Max-SAT Evaluations: Contributed Instances. Journal on Satisfiability, Boolean Modeling and Computation 4(1), 239–250 (2008)MATHGoogle Scholar
  7. 7.
    Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficient Weighted Max-SAT Solver. Journal of Artificial Intelligence Research 31, 1–32 (2008)MATHMathSciNetGoogle Scholar
  8. 8.
    Jukic, N., Nestorov, S., Vrbsky, S.V., Parrish, A.S.: Enhancing database access control by facilitating non-key related cover stories. Journal of Database Management 16(3), 1–20 (2005)Google Scholar
  9. 9.
    Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artificial Intelligence 172(2-3), 204–233 (2008)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 6–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Toland, T.S., Farkas, C., Eastman, C.M.: Dynamic disclosure monitor (D\(^{\mbox{{2}}}\)Mon): An improved query processing solution. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 124–142. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cornelia Tadros
    • 1
  • Lena Wiese
    • 1
  1. 1.Technische Universität DortmundDortmundGermany

Personalised recommendations