Advertisement

Two Case Studies for Jazzyk BSM

  • Michael Köster
  • Peter Novák
  • David Mainzer
  • Bernd Fuhrmann
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5920)

Abstract

Recently, we introduced Behavioural State Machines (BSM), a novel programming framework for development of cognitive agents with Jazzyk, its associated programming language and interpreter. The Jazzyk BSM framework draws a strict distinction between knowledge representation and behavioural aspects of an agent program. Jazzyk BSM thus enables synergistic exploitation of heterogeneous knowledge representation technologies in a single agent, as well as offers a transparent way for embedding cognitive agents in various simulated or physical environments. This makes it a particularly suitable platform for development of simulated, as well as physically embodied cognitive agents, such as virtual agents, or non-player characters for computer games.

In this paper we report on Jazzbot and Urbibot projects, two case-studies we developed using the Jazzyk BSM framework in simulated environments provided by a first person shooter computer game and a physical reality simulator for mobile robotics respectively. We describe the underlying technological infrastructure of the two agent applications and provide a brief account of experiences and lessons we learned during the development.

Keywords

Mobile Robot Cognitive Agent Agent Program Virtual Agent Human Player 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S., Kaminka, G.A., Schaffer, S., Sollitto, C.: Gamebots: A 3D Virtual World Test-Bed For Multi-Agent Research. In: Proceedings of the Second International Workshop on Infrastructure for Agents, MAS, and Scalable MAS (2001)Google Scholar
  2. 2.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System Design and Analysis. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  4. 4.
    Fuhrmann, B.: Implementierung eines URBI- und Rubymoduls für Jazzyk zur Entwicklung von Robotern. Master’s thesis, Clausthal University of Technology (2009)Google Scholar
  5. 5.
    Köster, M.: Implementierung eines autonomen Agenten in einer simulierten 3D-Umgebung - Wissensrepräsentation. Master’s thesis, Clausthal University of Technology (2008)Google Scholar
  6. 6.
    Laird, J.E.: It knows what you’re going to do: adding anticipation to a Quakebot. In: Proceedings of the fifth international conference on Autonomous agents, pp. 385–392. ACM, New York (2001)CrossRefGoogle Scholar
  7. 7.
    Laird, J.E., van Lent, M.: Human-level AI’s killer application: Interactive computer games. AI Magazine 22(2), 15–26 (2001)Google Scholar
  8. 8.
    Mainzer, D.: Implementierung eines autonomen Agenten in einer simulierten 3D-Umgebung - Interaktion mit der Umwelt. Master’s thesis, Clausthal University of Technology (2008)Google Scholar
  9. 9.
    Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems. Springer, New York (1992)Google Scholar
  10. 10.
    Michel, O.: Webots: Symbiosis between virtual and real mobile robots. In: Heudin, J.-C. (ed.) VW 1998. LNCS (LNAI), vol. 1434, pp. 254–263. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Novák, P.: Behavioural State Machines: programming modular agents. In: AAAI 2008 Spring Symposium: Architectures for Intelligent Theory-Based Agents, AITA 2008, March 26-28, pp. 49–54 (2008)Google Scholar
  12. 12.
    Novák, P.: Jazzyk: A programming language for hybrid agents with heterogeneous knowledge representations. In: Proceedings of the Sixth International Workshop on Programming Multi-Agent Systems, May 2008, pp. 143–158 (2008)Google Scholar
  13. 13.
    Novák, P., Jamroga, W.: Code patterns for agent-oriented programming. In: AAMAS (to appear, 2009)Google Scholar
  14. 14.
    Novák, P., Köster, M.: Designing goal-oriented reactive behaviours. In: Proceedings of the 6th International Cognitive Robotics Workshop, CogRob 2008, Patras, Greece, July 21-22, pp. 24–31 (2008)Google Scholar
  15. 15.
    Padovani, L., Provetti, A.: Qsmodels: Asp planning in interactive gaming environment. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 689–692. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Rabin, S.: AI Game Programming Wisdom 2. Charles River Media (2004)Google Scholar
  17. 17.
    Syrjänen, T.: Lparse 1.0 User’s Manual. University of Helsinki, Finland (2000)Google Scholar
  18. 18.
    Syrjänen, T., Niemelä, I.: The Smodels System. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 434–438. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Köster
    • 1
  • Peter Novák
    • 1
  • David Mainzer
    • 1
  • Bernd Fuhrmann
    • 1
  1. 1.Department of InformaticsClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations