Distributed Platform for Large-Scale Agent-Based Simulations

  • David Šišlák
  • Přemysl Volf
  • Michal Jakob
  • Michal Pěchouček
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5920)

Abstract

We describe a distributed architecture for situated large-scale agent-based simulations with predominately local interactions. The approach, implemented in AglobeX Simulation platform, is based on a spatially partitioned simulated virtual environment and allocating a dedicated processing core to the environment simulation within each partition. In combination with dynamic load-balancing, such partitioning enables virtually unlimited scalability of the simulation platform. The approach has been used to extend the AgentFly air-traffic test-bed to support simulation of a complete civilian air-traffic touching National Air-Space of United States. Thorough evaluation of the system has been performed, confirming that it can scale up to a very high number of complex agents operating simultaneously (thousands of aircraft) and determining the impact of different configurations of the simulation architecture on its overall performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agogino, A., Tumer, K.: Regulating air traffic flow with coupled agents. In: Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, vol. 2, pp. 535–542. International Foundation for Autonomous Agents and Multiagent Systems Richland, SC (2008)Google Scholar
  2. 2.
    Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete-event system simulation. Prentice Hall, Upper Saddle River (2001)Google Scholar
  3. 3.
    Borshchev, A., Filippov, A.: From system dynamics and discrete event to practical agent based modeling: Reasons, techniques, tools. In: Proceedings of the 22nd International Conference of the System Dynamics Society, pp. 25–29 (2004)Google Scholar
  4. 4.
    Brom, C., Šerý, O., Poch, T.: Simulation level of detail for virtual humans. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 1–14. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Dahmann, J.S., Fujimoto, R.M., Weatherly, R.M.: The department of defense high level architecture. In: Proceedings of the 29th conference on Winter simulation, pp. 142–149. IEEE Computer Society, Washington (1997)Google Scholar
  6. 6.
    Fujimoto, R.M.: Parallel and Distribution Simulation Systems. John Wiley & Sons, Inc., New York (1999)Google Scholar
  7. 7.
    Gorodetsky, V., Karsaev, O., Samoylov, V., Skormin, V.: Multi-Agent Technology for Air Traffic Control and Incident Management in Airport Airspace. In: Proceedings of the International Workshop Agents in Traffic and Transportation, Portugal, pp. 119–125 (2008)Google Scholar
  8. 8.
    Guo, Y., Gong, W., Towsley, D., Amherst, M.A.: Time-stepped hybrid simulation (TSHS) for large scale networks. In: IEEE INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings, vol. 2 (2000)Google Scholar
  9. 9.
    Hwang, I., Kim, J., Tomlin, C.: Protocol-based conflict resolution for air traffic control. Air Traffic Control Quarterly 15(1), 1–34 (2007)Google Scholar
  10. 10.
    Krozel, J., Doble, N.: Simulation of the National Airspace System in Inclement Weather. In: AIAA Modeling and Simulation Technologies Conference, Hilton Head, SC (2007)Google Scholar
  11. 11.
    Kuhl, F., Weatherly, R., Dahmann, J.: Creating computer simulation systems: an introduction to the high level architecture. Prentice Hall PTR, Upper Saddle River (1999)Google Scholar
  12. 12.
    Lui, J.C.S., Chan, M.F.: An efficient partitioning algorithm for distributed virtual environment systems. IEEE Trans. Parallel Distrib. Syst. 13(3), 193–211 (2002)CrossRefGoogle Scholar
  13. 13.
    Morillo, P., Ordufia, J.M., Duato, J.: A scalable synchronization technique for distributed virtual environments based on networked-server architectures. In: 2006 International Conference on Parallel Processing Workshops, ICPP 2006 Workshops, p. 8 (2006)Google Scholar
  14. 14.
    National Research Council Panel on Human Factors in Air Traffic Control Automation. The Future of Air Traffic Control: Human Factors and Automation. National Academy Press (1998)Google Scholar
  15. 15.
    Nicol, D.M., Yan, G.: Discrete event fluid modeling of background TCP traffic. ACM Transactions on Modeling and Computer Simulation (TOMACS) 14(3), 211–250 (2004)CrossRefGoogle Scholar
  16. 16.
    Nolan, M.S.: Fundamentals of Air Traffic Control, 4th edn. Thomson Brooks/Cole, Belmont (2004)Google Scholar
  17. 17.
    Nuic, A., Poinsot, C., Iagaru, M.G., Gallo, E., Navarro, F.A., Querejeta, C.: Advanced Aircraft Performance Modelling for ATM: Enhancements to the BADA Model. In: Beitrag zur 24th Digital Avioncs System Conference. DASC, Washington (2005)Google Scholar
  18. 18.
    Pěchouček, M., Šišlák, D.: Agent-based approach to free-flight planning, control, and simulation. IEEE Intelligent Systems 24(1) (2009)Google Scholar
  19. 19.
    Semsch, E., Jakob, M., Pavlíček, D., Pěchouček, M., Šišlák, D.: Autonomous uav surveillance in complex urban environments. In: McGann, C., Smith, D.E., Likhachev, M., Marthi, B. (eds.) Proceedings of ICAPS 2009 Workshop on Bridging the Gap Between Task and Motion Planning, Greece, September 2009, pp. 63–70 (2009)Google Scholar
  20. 20.
    Šišlák, D., Volf, P., Komenda, A., Samek, J., Pěchouček, M.: Agent-based multi-layer collision avoidance to unmanned aerial vehicles. In: Lawton, J. (ed.) Proceedings of 2007 International Conference on Integration of Knowledge Intensive Multi Agent Systems, KSCO. IEEE, Los Alamitos (2007)Google Scholar
  21. 21.
    Šišlák, D., Rehák, M., Pěchouček, M., Rollo, M., Pavlíček, D.: Aglobe: Agent development platform with inaccessibility and mobility support. In: Unland, R., Klusch, M., Calisti, M. (eds.) Software Agent-Based Applications, Platforms and Development Kits, Berlin, pp. 21–46. Birkhauser Verlag, Basel (2005)Google Scholar
  22. 22.
    Šišlák, D., Volf, P., Pěchouček, M.: Accelerated a* path planning. In: The Eighth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary (May 2009)Google Scholar
  23. 23.
    Waters, R.C., Barrus, J.W.: The rise of shared virtual environments. IEEE Spectrum 34(3) (March 1997)Google Scholar
  24. 24.
    Wu, Y., Gong, W.: Time-stepped simulation of queueing systems. In: Proceedings of SPIE, vol. 4367, p. 262 (2001)Google Scholar
  25. 25.
    Zhou, S., Cai, W., Lee, B.S., Turner, S.J.: Time-space consistency in large-scale distributed virtual environments. ACM Transactions on Modeling and Computer Simulation (TOMACS) 14(1), 31–47 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Šišlák
    • 1
  • Přemysl Volf
    • 1
  • Michal Jakob
    • 1
  • Michal Pěchouček
    • 1
  1. 1.Agent Technology Center, Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in Prague 

Personalised recommendations