A Variable Neighborhood Descent Search Algorithm for Delay-Constrained Least-Cost Multicast Routing

  • Rong Qu
  • Ying Xu
  • Graham Kendall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5851)

Abstract

The rapid evolution of real-time multimedia applications requires Quality of Service (QoS) based multicast routing in underlying computer networks. The constrained Steiner Tree, as the underpinning mathematical structure, is a well-known NP-complete problem. In this paper we investigate a variable neighborhood descent (VND) search, a variant of variable neighborhood search, for the delay-constrained least-cost (DCLC) multicast routing problem. The neighborhood structures designed in the VND approaches are based on the idea of path replacement in trees. They are simple, yet effective operators, enabling a flexible search over the solution space of this complex problem with multiple constraints. A large number of simulations demonstrate that our algorithm is highly efficient in solving the DCLC multicast routing problem in terms of the tree cost and execution time. To our knowledge, this is the first study of VND algorithm on the DCLC multicast routing problem. It outperforms other existing algorithms over a range of problem instances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of multicast routing algorithms for realtime communication on high-speed networks. IEEE Journal on Selected Areas in Communications 15, 332–345 (1997)CrossRefGoogle Scholar
  2. 2.
    Yeo, C.K., Lee, B.S., Er, M.H.: A survey of application level multicast techniques. Computer Communications 27, 1547–1568 (2004)CrossRefGoogle Scholar
  3. 3.
    Masip-Bruin, X., Yannuzzi, M., Domingo-Pascual, J., Fonte, A., Curado, M., Monteiro, E., Kuipers, F., Van Mieghem, P., Avallone, S., Ventre, G., Aranda-Gutierrez, P., Hollick, M., Steinmetz, R., Iannone, L., Salamatian, K.: Research challenges in QoS routing. Computer Communications 29, 563–581 (2006)CrossRefGoogle Scholar
  4. 4.
    Hwang, F.K., Richards, D.S.: Steiner tree problems. IEEE/ACM Trans. Networking 22, 55–89 (1992)MATHMathSciNetGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)MATHGoogle Scholar
  6. 6.
    Guo, L., Matta, I.: QDMR: An efficient QoS dependent multicast routing algorithm. In: Proceedings of the 5th IEEE Real Time Technology and Applications Symposium, pp. 213–222 (1999)Google Scholar
  7. 7.
    Diot, C., Dabbous, W., Crowcroft, J.: Multicast communication: a survey of protocols, functions, and mechanisms. IEEE Journal on Selected Areas in Communications 15, 277–290 (1997)CrossRefGoogle Scholar
  8. 8.
    Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems in multicast routing. Computers & Operations Research 32(8), 1953–1981 (2005)MATHCrossRefGoogle Scholar
  9. 9.
    Kompella, V.P., Pasquale, J.V., Polyzos, G.C.: Multicast routing for multimedia communication. IEEE/ACM Transactions on Networking 1, 286–292 (1993)CrossRefGoogle Scholar
  10. 10.
    Sun, Q., Langendoerfer, H.: Efficient multicast routing for delay-sensitive applications. In: Proceedings of the 2nd Workshop on Protocols for Multimedia Systems, pp. 452–458 (1995)Google Scholar
  11. 11.
    Zhu, Q., Parsa, M., Garcia-Luna-Aceves, J.J.: A source-based algorithm for delay-constrained minimum-cost multicasting. In: Proceedings of the 14th Annual Joint Conference of the IEEE Computer and Communication (INFOCOM 1995), pp. 377–385. IEEE Computer Society Press, Boston (1995)Google Scholar
  12. 12.
    Shaikh, A., Shin, K.: Destination-driven routing for low-cost multicast. IEEE Journal on Selected Areas in Communications 15, 373–381 (1997)CrossRefGoogle Scholar
  13. 13.
    Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15, 141–145 (1981)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Cormen, T.H., Leiserson, C.E., Revest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1997)Google Scholar
  15. 15.
    Betsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  16. 16.
    Eppstein, D.: Finding the k shortest paths. SIAM Journal of Computing 28, 652–673 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wang, X.L., Jiang, Z.: QoS multicast routing based on simulated annealing algorithm. In: Proceedings of International Society for Optical Engineering on Network Architectures, Management, and Applications, pp. 511–516 (2004)Google Scholar
  18. 18.
    Zhang, K., Wang, H., Liu, F.Y.: Distributed multicast routing for delay variation-bounded Steiner tree using simulated annealing. Computer Communications 28, 1356–1370 (2005)CrossRefGoogle Scholar
  19. 19.
    Wang, Z., Shi, B., Zhao, E.: Bandwidth-delay-constrained least-cost multicast routing based on heuristic genetic algorithm. Computer communications 24, 685–692 (2001)CrossRefGoogle Scholar
  20. 20.
    Haghighat, A.T., Faez, K., Dehghan, M., Mowlaei, A., Ghahremani, Y.: GA-based heuristic algorithms for bandwidth-delay-constrained least-cost multicast routing. Computer Communications 27, 111–127 (2004)CrossRefGoogle Scholar
  21. 21.
    Youssef, H., Sait, M., Adiche, H.: Evolutionary algorithms, simulated annealing and tabu search: a comparative study. Engineering Applications of Artificial Intelligence 14, 167–181 (2001)CrossRefGoogle Scholar
  22. 22.
    Skorin-Kapov, N., Kos, M.: The application of steiner trees to delay constrained multicast routing: a tabu search approach. In: Proceedings of the seventh international Conference on Telecommunications, Zagreb, Croatia, pp. 443–448 (2003)Google Scholar
  23. 23.
    Wang, H., Fang, J., Wang, H., Sun, Y.M.: TSDLMRA: an efficient multicast routing algorithm based on tabu search. Journal of Network and Computer Applications 27, 77–90 (2004)CrossRefGoogle Scholar
  24. 24.
    Ghaboosi, N., Haghighat, A.T.: A tabu search based algorithm for multicast routing with QoS constraints. In: 9th International Conference on Information Technology, pp. 18–21 (2006)Google Scholar
  25. 25.
    Skorin-Kapov, N., Kos, M.: A GRASP heuristic for the delay-constrained multicast routing problem. Telecommunication Systems 32, 55–69 (2006)CrossRefGoogle Scholar
  26. 26.
    Ghaboosi, N., Haghighat, A.T.: A path relinking approach for Delay-Constrained Least-Cost Multicast routing problem. In: 19th International Conference on Tools with Artificial Intelligence, pp. 383–390 (2007)Google Scholar
  27. 27.
    Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations for the prize collecting Steiner tree problem in graphs. Networks 38, 50–58 (2001)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Gruber, M., Raidl, G.R.: Variable neighborhood search for the bounded diameter minimum spanning tree problem. In: Hansen, P., Mladenović, N., Pérez, J.A.M., Batista, B.M., Moreno-Vega, J.M. (eds.) Proceedings of the 18th Mini Euro Conference on Variable Neighborhood Search, Tenerife, Spain (2005)Google Scholar
  29. 29.
    Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Operations Research 24, 1097–1100 (1997)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Jari, K., Teemu, N., Olli, B., Michel, G.: An efficient variable neighborhood search heuristic for very large scale vehicle routing problems. Computers & Operations Research 34, 2743–2757 (2007)MATHCrossRefGoogle Scholar
  31. 31.
    Burke, E.K., Curtois, T.E., Post, G., Qu, R., Veltman, B.: A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem. European Journal of Operational Research 2, 330–341 (2008)CrossRefGoogle Scholar
  32. 32.
    Zhang, B., Mouftah, H.T.: A destination-driven shortest path tree algorithm. In: IEEE International Conference on Communications, pp. 2258–2262 (2002)Google Scholar
  33. 33.
    Martins, S.L., Resende, M.G.C., Ribeiro, C.C., Pardalos, P.M.: A parallel GRASP for the Steiner tree problem in graphs using a hybrid local search strategy. Journal of Global Optimization 17(1-4), 267–283 (2000)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Leitner, M., Raidl, G.R.: Lagrangian Decomposition, Metaheuristics, and Hybrid Approaches for the Design of the Last Mile in Fiber Optic Networks. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) HM 2008. LNCS, vol. 5296, pp. 158–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. 35.
    Sun, Q., Langendoerfer, H.: An efficient delay-constrained multicast routing algorithm. Technical Report, Internal Report, Institute of Operating Systems and Computer Networks. TU Braunschweig, Germany (1997)Google Scholar
  36. 36.
    Cayley, A.: A theorem on trees. Journal of Math. 23, 376–378 (1989)Google Scholar
  37. 37.
    Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected Areas in Communications 6, 1617–1622 (1988)CrossRefGoogle Scholar
  38. 38.
    Bastos, M.P., Ribeiro, C.C.: Reactive tabu search with path relinking for the Steiner problem in graphs. In: Proceedings of the third Metaheuristics International Conference, Angra dos Reis, Brazil (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rong Qu
    • 1
  • Ying Xu
    • 1
    • 2
  • Graham Kendall
    • 1
  1. 1.The Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer ScienceThe University of NottinghamNottinghamUK
  2. 2.School of Computer and CommunicationHunan UniversityHunanChina

Personalised recommendations