Designing Agent Behaviour in Agent-Based Simulation through Participatory Method

  • Patrick Taillandier
  • Elodie Buard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5925)

Abstract

Agent-based simulation has demonstrated its usefulness for the modelling of complex systems. However, the simulation widely depends on the agent behaviour designing. In order to facilitate the definition of such behaviour, we propose an approach based on a participatory method: a domain expert directly enters his knowledge about entities in a specific environment. In this paper, we propose to formalise the agent behaviour by using a combination of production rules and of a multi-criteria decision making method. An experiment, carried out in the domain of ecological simulation, is presented. This first experiment shows promising results for our approach.

Keywords

multi-agent simulation agent behaviour design participatory method multi-criteria decision making ecological simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amouroux, E., Chu, T.-C., Boucher, A., Drogoul, A.: GAMA: an environment for implementing and running spatially explicit multi-agent simulations. In: PRIMA (2007)Google Scholar
  2. 2.
    Ben Mena, S.: Introduction aux méthodes multicritères d’aide à la décision. Biotechnol. Agro. Soc. Environ. 4(2), 83–93 (2000)Google Scholar
  3. 3.
    Blanc, J.J., Barnes, R.F.W., Craig, G.C., Douglas-Hamilton, I., Dublin, H.T., Hart, J.A., Thouless, C.R.: Changes in elephant numbers in major savanna populations in eastern and southern Africa. Pachyderm 38, 19–28 (2005)Google Scholar
  4. 4.
    Chu, T.Q., Boucher, A., Drogoul, A., Vo, D.A., Nguyen, H.P., Zucker, J.D.: Interactive Learning of Expert Criteria for Rescue Simulations. In: PRIMA, Hanoi, pp. 127–138 (2008)Google Scholar
  5. 5.
    Cohen, W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123 (1995)Google Scholar
  6. 6.
    Guyot, P., Drogoul, A., Honiden, S.: Power and negotiation: lessons from agent-based participatory simulations. In: AAMAS, pp. 27–33 (2006)Google Scholar
  7. 7.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  8. 8.
    Roy, B.: The outranking approach and the foundations of ELECTRE methods. Theory and Decision 31 (1991)Google Scholar
  9. 9.
    Taillandier, P.: Knowledge diagnosis in systems based on an informed tree search strategy: application to cartographic generalisation. In: CSTST Student Workshop, Cergy-Pontoise (Paris), France, pp. 589–594 (2008)Google Scholar
  10. 10.
    Taillandier, P., Chu, T.Q.: Using Participatory Paradigm to Learn Human Behaviour. In: ICKSE, Hanoi, Viet Nam (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Patrick Taillandier
    • 1
    • 2
  • Elodie Buard
    • 3
    • 4
  1. 1.IRD, UMI UMMISCO 209BondyFrance
  2. 2.IFI, MSI, UMI 209Ha NoiViet Nam
  3. 3.COGIT IGNSaint-MandéFrance
  4. 4.UMR Géographie CitésParisFrance

Personalised recommendations