Advertisement

An Empirical Study of Agent Programs

A Dynamic Blocks World Case Study in GOAL
  • M. Birna van Riemsdijk
  • Koen V. Hindriks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5925)

Abstract

Agent-oriented programming has been motivated in part by the conception that high-level programming constructs based on common sense notions such as beliefs and goals provide appropriate abstraction tools to develop autonomous software. Various agent programming languages and frameworks have been developed by now, but no systematic study has been done as to how the language constructs in these languages may and are in fact used in practice. Performing a study of these aspects may contribute to the design of best practices or programming guidelines for agent programming, and clarify the use of common sense notions in agent programs. In this paper, we analyze various agent programs for dynamic blocks world, written in the Goal agent programming language. We present several observations based on a quantitative and qualitative analysis that provide insight into more practical aspects of the development of agent programs. Finally, we identify important issues in three key areas related to agent-oriented programming that need further investigation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astefanoaei, L., de Boer, F.S.: Model-checking agent refinement. In: AAMAS, pp. 705–712 (2008)Google Scholar
  2. 2.
    Basili, V.R., Briand, L.C. (eds.): Empirical Software Engineering: An International Journal. Springer, Heidelberg (2009), http://www.springer.com/computer/programming/journal/10664 Google Scholar
  3. 3.
    Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Programming: Languages, Platforms and Applications. Springer, Berlin (2005)MATHGoogle Scholar
  4. 4.
    Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Programming: Languages, Tools and Applications. Springer, Berlin (2009)MATHGoogle Scholar
  5. 5.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentSpeak using Jason. Wiley, Chichester (2007)MATHCrossRefGoogle Scholar
  6. 6.
    Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents and Multi-Agent Systems 16(3), 214–248 (2008)CrossRefGoogle Scholar
  7. 7.
    Hindriks, K.V.: Modules as policy-based intentions: Modular agent programming in GOAL. In: Dastani, M.M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 156–171. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Hindriks, K., Jonker, C., Pasman, W.: Exploring heuristic action selection in agent programming. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS (LNAI), vol. 5442, pp. 24–39. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Hindriks, K., van Riemsdijk, M.B.: Using temporal logic to integrate goals and qualitative preferences into agent programming. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 215–232. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Tools and Applications. Springer, Berlin (2009)Google Scholar
  11. 11.
    Nilsson, N.J.: Teleo-reactive programs and the triple-tower architecture. Electronic Transactions on Artificial Intelligence 5, 99–110 (2001)Google Scholar
  12. 12.
    Pokahr, A., Braubach, L., Lamersdorf, W.: A goal deliberation strategy for BDI agent systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–93. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi- Agent Programming: Languages, Platforms and Applications. Springer, Berlin (2005)Google Scholar
  14. 14.
    Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60, 51–92 (1993)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Slaney, J., Thiébaux, S.: Blocks World revisited. Artificial Intelligence 125, 119–153 (2001)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    van Riemsdijk, M.B., Hindriks, K.: An empirical study of agent programs: A dynamic blocks world case study in goal, extended version (2009), http://mmi.tudelft.nl/~koen/prima09extended.pdf
  17. 17.
    Winikoff, M.: JACKTM intelligent agents: an industrial strength platform. In: Bordini, R.H., et al. (eds.) Multi-Agent Programming: Languages, Platforms and Applications. Springer, Berlin (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Birna van Riemsdijk
    • 1
  • Koen V. Hindriks
    • 1
  1. 1.EEMCSDelft University of TechnologyDelftThe Netherlands

Personalised recommendations