Characteristic classes and differentiable manifolds

  • E. Thomas
Part of the C.I.M.E. Summer Schools book series (CIME, volume 41)

Abstract

These lectures might be more accurately titled “The application of characteristic classes to geometric problems on manifolds.” In particular we will be interested in studying vector fields on manifolds. This first lecture gives the basic definitions we will need throughout the course.

1. Smooth manifolds. Let R denote the real numbers and Rn, for n ≥ 1, the space of n-tples (x1,…,xn ), xi∈R. Let U be an open set in Rn. A map f: U → R will be called smooth if its partial derivatives of all orders exist and are continuous. More generally, a map f: U → Rq will be called smooth if each coordinate function fj is smooth, where fj: U → R is given by the following composition:

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books and Lecture Notes

  1. A-M.
    L. Auslander and R. MacKenzie, Introduction to Differentiable Manifolds, McGraw-Hill, 1963.MATHGoogle Scholar
  2. H.
    P. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd Edition, Springer-Verlag, 1966.MATHGoogle Scholar
  3. Ha.
    P. Halmos, Finite-dimensional vector spaces, 2nd Edition, Van Nostrand, 1958MATHGoogle Scholar
  4. Hu.
    S. Hu, Elements of General Topology, Holden-Day, 1964.MATHGoogle Scholar
  5. M.l
    J. Milnor, Lectures on characteristic classes, Mimeographed notes, Princeton University, 1957.Google Scholar
  6. M.2
    ——, Topology from the Differentiable Viewpoint, University of Virginia Press, 1965.MATHGoogle Scholar
  7. M.3
    ——, Lectures on Morse Theory, Annals of Math. Studies (No. 51), Princeton, 1963.Google Scholar
  8. Mu.
    J. Munkres, Elementary Differential Topology, Annals of Math. Studies (No..54), Princeton, 1963.MATHGoogle Scholar
  9. S.
    E. Spanier, Algebraic Topology, McGraw-Hill, 1966.MATHGoogle Scholar
  10. St.l
    N. Steenrod, The Topology of Fiber Bundles, Princeton University Press, 1951.Google Scholar
  11. St.2
    N. Steenrod and D. Epstein. Cohomology operations, Annals of Math. Studies (No. 50), 1962Google Scholar
  12. T.
    E. Thomas, Seminar on Fiber Spaces, Lecture notes in Math., No. 13, Springer-Verlag, 1966.MATHGoogle Scholar

Papers

  1. 1.
    J. F. Adams, On the non-existence of elements of Hopf invariant one, Annals of Math, 72 (1960), 20–104.CrossRefGoogle Scholar
  2. 2.
    ——, Vector fields on spheres, ibid., 75 (1962), 603–632.CrossRefGoogle Scholar
  3. 3.
    ——, On the groups J(x)-II, Topology, 3 (1965), 137–172.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    J. Adem, The relations on Steenrod powers of cohomology classes, in Algebraic Geometry and Topology, Princeton, 1957, 191–230.Google Scholar
  5. 5.
    J. Adem and S. Gitler, Secondary characteristic classes and the immersion problem, Bol. Mat. Mex., 1963, 53–78.Google Scholar
  6. 6.
    M. Atiyah and F. Hirzebruch, Cohomologie-operationen und characteristische Klassen, Math. Zeit., 77 (1961), 149–181.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    E. Brown and F.Peterson, Whitehead products and Cohomology Operations, Quart. J. Math., second series, 17 (1964), 116–120.MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Eckmann, Gruppentheoreterischer Beweis des Satzes Hurwitz-Radon..., Comment. Math. Helv., 15 (1942), 358–366.CrossRefGoogle Scholar
  9. 9.
    H. Hopf, Vector fielder in n-dimensionalen mannigfaltigkeiten, Math. Ann., 96 (1927), 225–260.MathSciNetCrossRefGoogle Scholar
  10. 10.
    ——, Zur topologie der Komplexen mannigfaltigkeiten, in Studies and Essays presented to R. Courant, Interscience, 1941, 167–186.Google Scholar
  11. 11.
    M. Kervaire, Non-parallelizability of the n-sphere. for n > 7, Proc. Nat. Acad. Sci., (U.S.A.), 44 (1958), 280–283.MATHCrossRefGoogle Scholar
  12. 12.
    S. Liao, On the theory of obstructions of fiber bundles, Ann. of Math., 60 (1954), 146–191.MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Mahowald and F. Peterson, Secondary cohomology operations on the Thorn class, Topology 2 (1964), 367–377.MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Milnor. Some consequences of a theorm of Bott, Ann. of Math., 68 (1958), 444–449.MathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Peterson and N. Stein. Secondary characteristic classes, Ann. of Math., 76 (1962), 510–523.MathSciNetCrossRefGoogle Scholar
  16. 16.
    R.H.Szczarba On tangent bundles of fiber spaces and quotient spaces, Amer. J. Math., 86 (1964), 685–697.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    R. Thorn, Espaces fibrés en spheres et carrés de Steenrod, Ann. Ecole Norm, Sup., 69 (1952), 109–182.Google Scholar
  18. 18.
    E. Thomas, Postnikov variants and higher order cohomology operations, Annals of Math., to appear.Google Scholar
  19. 19.
    ——, The index of a tangent 2-field, Comment, Math. Helv., to appear.Google Scholar
  20. 20.
    J.H. Whitehead, On the groups πr (Vn, m) and sphere-bundles (with Corrigen-duum), Collected Works, Vol. II, Pergamon Press, 303–362.Google Scholar
  21. 21.
    W. Wu, Classes caracteristique et i-carrés d'une variété, C. R. Acad. Sci., Paris, 230 (1950), 508–511.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • E. Thomas
    • 1
  1. 1.National Science FoundationUSA

Personalised recommendations