Supporting the Development of Data Wrapping Ontologies

  • Lina Lubyte
  • Sergio Tessaris
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5926)


We consider the problem of designing data wrapping ontologies whose purpose is to describe relational data sources and to provide a semantically enriched access to the underlying data. Since such ontologies must be close to the data they wrap, the new terms that they introduce must be “supported” by data from the relational sources; i.e. when queried, they should return nonempty answers. In order to ensure non-emptiness, those wrapping ontologies are usually carefully handcrafted by taking into account the query answering mechanism. In this paper we address the problem of supporting an ontology engineer in this task. We provide an algorithm for verifying emptiness of a term in the data wrapping ontology w.r.t.the data sources. We also show how this algorithm can be used to guide the ontology engineer in fixing potential terms unsupported by the data. Finally, we present an implemented tool and an empirical study showing benefits of our approach.


Description Logic Domain Ontology Conjunctive Query Tree Automaton Atomic Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed, heterogeneous and autonomous databases. ACM Computing Surveys 22(3), 183–236 (1990)CrossRefGoogle Scholar
  2. 2.
    Calvanese, D., Giacomo, G.D., Lenzerini, M., et al.: Data integration in data warehousing. Int. J. of Cooperative Information Systems 10(3), 237–271 (2001)CrossRefGoogle Scholar
  3. 3.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS 2002, pp. 233–346. ACM, New York (2002)CrossRefGoogle Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)Google Scholar
  5. 5.
    Wache, H., Vogele, T., Visser, U., et al.: Ontology-based integration of information - a survey of existing approaches. In: Proc. of the Workshop on Ontologies and Information Sharing, pp. 108–117 (2001)Google Scholar
  6. 6.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Lubyte, L., Tessaris, S.: Automatic extraction of ontologies wrapping relational data sources. In: Bhowmick, S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 128–142. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  9. 9.
    Lubyte, L., Tessaris, S.: Supporting the design of ontologies for data access. In: Workshop Notes of DL 2008 (2008)Google Scholar
  10. 10.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{E}\mathcal{L}\) envelope. In: Proc. of IJCAI 2005, pp. 364–369 (2005)Google Scholar
  11. 11.
    Baader, F., Calvanese, D., McGuinness, D., et al. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  12. 12.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  13. 13.
    Pérez-Urbina, H., Motik, B., Horrocks, I.: Rewriting conjunctive queries under description logic constraints. In: Proc. of LID 2008 (2008)Google Scholar
  14. 14.
    Vardi, M.Y.: Automata theory for database theoreticians. In: Proc. of PODS 1989, pp. 83–92. ACM, New York (1989)Google Scholar
  15. 15.
    Calvanese, D., Giacomo, G.D., Lembo, D., et al.: Tractable reasoning and efficient query answering in description logics: The dl-lite family. J. of Automated Reasoning 39(3), 385–429 (2007)zbMATHCrossRefGoogle Scholar
  16. 16.
    Rodriguez-Muro, M., Lubyte, L., Calvanese, D.: Realizing ontology based data access: A plug-in for protégé. In: Proc. of IIMAS 2008, pp. 286–289 (2008)Google Scholar
  17. 17.
    Lubyte, L., Tessaris, S.: Supporting the design of ontologies for semantic data access. Technical report, KRDB group – Free University of Bozen-Bolzano (2009),
  18. 18.
    Corcho, Ó., Fernández-López, M., Gómez-Pérez, A.: Methodologies, tools and languages for building ontologies: Where is their meeting point? Data Knowl. Eng. 46(1), 41–64 (2003)CrossRefGoogle Scholar
  19. 19.
    Baader, F., Bienvenu, M., Lutz, C., Wolter, F.: Query answering over DL ABoxes: How to pick the relevant symbols. In: Workshop Notes of DL 2009 (2009)Google Scholar
  20. 20.
    Levy, A.Y.: Irrelevance Reasoning in Knowledge Based Systems. PhD thesis, Stanford University (1993)Google Scholar
  21. 21.
    Seylan, I., Franconi, E., de Bruijn, J.: Effective query rewriting with ontologies over DBoxes. In: Proc. of IJCAI 2009, pp. 923–930 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lina Lubyte
    • 1
  • Sergio Tessaris
    • 1
  1. 1.Free University of Bozen-Bolzano 

Personalised recommendations