Utilising Task-Patterns in Organisational Process Knowledge Sharing

  • Bo Hu
  • Ying Du
  • Liming Chen
  • Uwe V. Riss
  • Hans-Friedrich Witschel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5926)

Abstract

Pattern based task management has been proposed as a promising approach to work experience reuse in knowledge intensive work environments. This paper inspects the need of organisational work experience sharing and reuse in the context of a real-life scenario based on use case studies. We developed a task pattern management system that supports process knowledge externalisation-internalisation. The system brings together task management related concepts and semantic technologies that materialise the former through a variety of semantic enhanced measures. Case studies were carried out for evaluating the proposed approach and also for drawing inspiration for future development.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Bechhofer, B., van Harmelen, F., Hendler, J., Horrocks, I., McGuiness, D.L., Patel-Schneider, P., Stein, L.A.: OWL Web Ontology Language Reference. W3C (February 2004)Google Scholar
  3. 3.
    Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics for name-matching tasks. In: IIWeb, pp. 73–78 (2003)Google Scholar
  4. 4.
    Kalfoglou, Y., Hu, B.: CROSI Mapping System (CMS) Results of the 2005 Ontology Alignment Contest. In: Proceedings of the 3rd International Conference on Knowledge Capture (KCap 2005) workshop on Integrating Ontologies, Banff, Canada (October 2005)Google Scholar
  5. 5.
    Krötzsch, M., Vrandečić, D., Völkel, M.: Semantic mediawiki. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 935–942. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Lovàsz, L., Plummer, M.: Matching Theory. North-Holland, Amsterdam (1986)MATHGoogle Scholar
  7. 7.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10, 334–350 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Riss, U.V., Cress, U., Kimmerle, J., Martin, S.: Knowledge transfer by sharing task templates: two approaches and their psychological requirements. Knowledge management Research & Practice (4), 287–296 (2007)Google Scholar
  9. 9.
    Riss, U.V., Rickayzen, A., Maus, H., van der Aalst, W.M.P.: Challenges for business process and task management. Journal of Universal Knowledge Management, Special Issue on Knowledge Infrastructures for the Support of Knowledge Intensive Business Processes, 77–100 (2005)Google Scholar
  10. 10.
    Sauermann, L., van Elst, L., Dengel, A.: Pimo - a framework for representing personal information models. In: Pellegrini, T., Schaffert, S. (eds.) Proceedings of I-Semantics 2007, pp. 270–277. JUCS (2007)Google Scholar
  11. 11.
    Wang, J., Zhang, K., Jeong, K., Shasha, D.: A system for approximate tree matching. IEEE Transactions on Knowledge Data Engineering 6(4), 559–571 (1994)CrossRefGoogle Scholar
  12. 12.
    Williams, K.: What is the digital divide? Technical reportGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bo Hu
    • 1
  • Ying Du
    • 1
  • Liming Chen
    • 2
  • Uwe V. Riss
    • 1
  • Hans-Friedrich Witschel
    • 1
  1. 1.SAP Research 
  2. 2.University of UlsterUK

Personalised recommendations