Passive/Active Load Balancing with Informed Node Placement in DHTs

  • Mikael Högqvist
  • Nico Kruber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5918)

Abstract

Distributed key/value stores are a basic building block for large-scale Internet services. Support for range queries introduces new challenges to load balancing since both the key and workload distribution can be non-uniform.

We build on previous work based on the power of choice to present algorithms suitable for active and passive load balancing that adapt to both the key and workload distribution. The algorithms are evaluated in a simulated environment, focusing on the impact of load balancing on scalability under normal conditions and in an overloaded system.

References

  1. 1.
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store. In: SOSP, pp. 205–220. ACM, New York (2007)CrossRefGoogle Scholar
  2. 2.
    Rhea, S.C., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Stoica, I., Yu, H.: Opendht: a public dht service and its uses. In: SIGCOMM, pp. 73–84. ACM, New York (2005)Google Scholar
  3. 3.
    Reinefeld, A., Schintke, F., Schütt, T., Haridi, S.: Transactional data store for future internet services. Towards the Future Internet - A European Research Perspective (2009)Google Scholar
  4. 4.
    Blake, C., Rodrigues, R.: High availability, scalable storage, dynamic peer networks: Pick two. In: HotOS, USENIX, pp. 1–6 (2003)Google Scholar
  5. 5.
    Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric replication for structured peer-to-peer systems. In: DBISP2P, pp. 74–85 (2005)Google Scholar
  6. 6.
    Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM, pp. 149–160 (2001)Google Scholar
  7. 7.
    Vishnumurthy, V., Francis, P.: A comparison of structured and unstructured p2p approaches to heterogeneous random peer selection. In: USENIX, pp. 309–322 (2007)Google Scholar
  8. 8.
    Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer systems. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp. 131–140. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Wang, X., Loguinov, D.: Load-balancing performance of consistent hashing: asymptotic analysis of random node join. IEEE/ACM Trans. Netw. 15(4), 892–905 (2007)CrossRefGoogle Scholar
  10. 10.
    Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In: ACM Symposium on Theory of Computing, May 1997, pp. 654–663 (1997)Google Scholar
  11. 11.
    Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data with applications to peer-to-peer systems. In: VLDB, pp. 444–455. Morgan Kaufmann, San Francisco (2004)Google Scholar
  12. 12.
    Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load balancing and locality in range-queriable data structures. In: PODC, pp. 115–124 (2004)Google Scholar
  13. 13.
    Charpentier, M., Padiou, G., Quéinnec, P.: Cooperative mobile agents to gather global information. In: NCA, pp. 271–274. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  14. 14.
    Byers, J.W., Considine, J., Mitzenmacher, M.: Simple load balancing for distributed hash tables. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 80–87. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Pitoura, T., Ntarmos, N., Triantafillou, P.: Replication, load balancing and efficient range query processing in dhts. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 131–148. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Ledlie, J., Seltzer, M.I.: Distributed, secure load balancing with skew, heterogeneity and churn. In: INFOCOM, pp. 1419–1430. IEEE, Los Alamitos (2005)Google Scholar
  17. 17.
    Giakkoupis, G., Hadzilacos, V.: A scheme for load balancing in heterogenous distributed hash tables. In: PODC, pp. 302–311. ACM, New York (2005)Google Scholar
  18. 18.
    Manku, G.S.: Balanced binary trees for id management and load balance in distributed hash tables. In: PODC, pp. 197–205 (2004)Google Scholar
  19. 19.
    Kenthapadi, K., Manku, G.S.: Decentralized algorithms using both local and random probes for p2p load balancing. In: SPAA, pp. 135–144. ACM, New York (2005)Google Scholar
  20. 20.
    Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute range queries. In: SIGCOMM, pp. 353–366. ACM, New York (2004)Google Scholar
  21. 21.
    Girdzijauskas, S., Datta, A., Aberer, K.: Oscar: Small-world overlay for realistic key distributions. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M. (eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 247–258. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Mikael Högqvist
    • 1
  • Nico Kruber
    • 1
  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations