Optimal TCP-Friendly Rate Control for P2P Streaming: An Economic Approach

  • Jinyao Yan
  • Martin May
  • Bernhard Plattner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5918)

Abstract

TCP and TCP-friendly rate control protocols, designed for unicast, do not take neighbor connections into account in P2P networks. In this paper, we study the topic of distributed and optimal rate control for scalable video streams in P2P streaming applications. First, we propose a fully distributed and TCP-friendly network analytical model for rate control and formulate an optimization problem to maximize the aggregate utility for the P2P streams. In the model, we further extend the definition of TCP-friendliness for P2P network. Second, we propose a shadow price-based distributed algorithm for P2P Streaming that solves the optimization problem. Finally, we evaluate the performance of the proposed algorithm in terms of streaming quality and messaging overhead. Extensive simulations show that the proposed algorithms generate very small overhead and that they are optimal in terms of overall quality for scalable streams.

References

  1. 1.
    Floyd, S., Handley, M., Padhye, J.: Equation-Based Congestion Control for Unicast Application. In: ACM SIGCOMM 2000 (September 2000)Google Scholar
  2. 2.
    Low, S., Lapsley, D.E.: Optimization Flow Control, I: Basic Algorithm and Convergence. IEEE/ACM Trans. on Networking 7(6) (December 1999)Google Scholar
  3. 3.
    Cui, Y., Xue, Y., Nahrstedt, K.: Optimal Resource Allocation in Overlay Multicast. IEEE Transactions on Parallel and Distributed Systems 17(8) (2006)Google Scholar
  4. 4.
    Chu, Y., Rao, S.G., Zhang, H.: A case for End System Multicast. In: Proc. ACM Sigmetrics (June 2000)Google Scholar
  5. 5.
  6. 6.
    Liu, J., Rao, S.G., Li, B., Zhang, H.: Opportunities and Challenges of Peer-to-Peer Internet Video Broadcast. IEEE JSAC 96(1) (January 2008)Google Scholar
  7. 7.
    Li, W.: Overview of Fine Granularity Scalability in MPEG-4 Video Standard. IEEE Trans.on CSVT 11(3) (March 2001)Google Scholar
  8. 8.
    Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate Control for Communication Networks:Shadow Prices, Proportional Fairness and Stability. Journal of the Operational Research Society 49 (1998)Google Scholar
  9. 9.
    Luenberger, D.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1984)MATHGoogle Scholar
  10. 10.
    Low, S.H., Paganini, F., Doyle, J.C.: Internet congestion control. IEEE Control Systems Magazine 22(1) (Febuary 2002)Google Scholar
  11. 11.
  12. 12.
    Floyd, S., Fall, K.: Promoting the Use of End-to-End Congestion Control in the Internet. IEEE/ACM Transactions on Networking (1999)Google Scholar
  13. 13.
    Barakat, C., Thiran, P., Iannaccone, G., Diot, C., Owezarski, P.: Modeling Internet backbone traffic at the flow level. IEEE Trans. on Signal Processing 51(8) (August 2003)Google Scholar
  14. 14.
    Yan, J., May, M., Plattner, B.: Media and TCP-Friendly Congestion Control for Scalable Video Streams. IEEE Trans. on Multimedia 8(2) (2006)Google Scholar
  15. 15.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)CrossRefMATHGoogle Scholar
  16. 16.
    Yan, J., May, M., Plattner, B.: Distributed and Optimal Congestion Control for Application-layer Multicast: A Synchronous Dual Algorithm. In: IEEE CCNC, Las Vegas, US (2008)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Jinyao Yan
    • 1
    • 2
  • Martin May
    • 3
  • Bernhard Plattner
    • 1
  1. 1.Computer Engineering and Networks Laboratory, Swiss Federal Institute of TechnologyETH ZurichSwitzerland
  2. 2.Computer and Network CenterCommunication University of ChinaBeijingChina
  3. 3.Thomson Paris Research LabThomsonFrance

Personalised recommendations