Maximizing the Minimum Load: The Cost of Selfishness

  • Leah Epstein
  • Elena Kleiman
  • Rob van Stee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5929)

Abstract

We consider a scheduling problem where each job is controlled by a selfish agent, who is only interested in minimizing its own cost, which is defined as the total load on the machine that its job is assigned to. We consider the objective of maximizing the minimum load (cover) over the machines. Unlike the regular makespan minimization problem, which was extensively studied in a game theoretic context, this problem has not been considered in this setting before.

We study the price of anarchy (poa) and the price of stability (pos). We show that on related machines, both these values are unbounded. We then focus on identical machines. We show that the \(\textsc{pos}\) is 1, and we derive tight bounds on the \(\textsc{poa}\) for m ≤ 6 and nearly tight bounds for general m. In particular, we show that the \(\textsc{poa}\) is at least 1.691 for larger m and at most 1.7. Hence, surprisingly, the \(\textsc{poa}\) is less than the \(\textsc{poa}\) for the makespan problem, which is 2. To achieve the upper bound of 1.7, we make an unusual use of weighting functions. Finally, in contrast we show that the mixed \(\textsc{poa}\) grows exponentially with m for this problem, although it is only Θ(logm/loglogm) for the makespan.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proc. of the 45th Symposium on Foundations of Computer Science (FOCS 2004), pp. 295–304 (2004)Google Scholar
  2. 2.
    Bansal, N., Sviridenko, M.: The santa claus problem. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 31–40 (2006)Google Scholar
  3. 3.
    Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Transactions on Algorithms 3(1) (2007)Google Scholar
  4. 4.
    Deuermeyer, B.L., Friesen, D.K., Langston, M.A.: Scheduling to maximize the minimum processor finish time in a multiprocessor system. SIAM Journal on Discrete Mathematics 3(2), 190–196 (1982)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dhangwatnotai, P., Dobzinski, S., Dughmi, S., Roughgarden, T.: Truthful approximation schemes for single-parameter agents. In: 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 15–24 (2008)Google Scholar
  6. 6.
    Ebenlendr, T., Noga, J., Sgall, J., Woeginger, G.J.: A note on semi-online machine covering. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 110–118. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Epstein, L., van Stee, R.: Maximizing the minimum load for selfish agents. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 264–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to nash equilibrium in load balancing. ACM Trans. Algorithms 3(3), 32 (2007)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the coordination ratio for a selfish routing game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT Numerical Mathematics 19(3), 312–320 (1979)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fotakis, D., Kontogiannis, S.C., Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.: The structure and complexity of nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing 3(4), 299–325 (1974)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Lee, C.C., Lee, D.T.: A simple online bin packing algorithm. Journal of the ACM 32(3), 562–572 (1985)MATHCrossRefGoogle Scholar
  15. 15.
    Mavronicolas, M., Spirakis, P.G.: The price of selfish routing. In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing (STOC 2001), pp. 510–519 (2001)Google Scholar
  16. 16.
    Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Behavior 35, 166–196 (2001)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Roughgarden, T.: Selfish routing and the price of anarchy. MIT Press, Cambridge (2005)Google Scholar
  19. 19.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Sahasrabudhe, A., Kar, K.: Bandwidth allocation games under budget and access constraints. In: CISS, pp. 761–769 (2008)Google Scholar
  21. 21.
    Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multiprocessor scheduling. INFORMS Journal on Computing 19(1), 52–63 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Leah Epstein
    • 1
  • Elena Kleiman
    • 1
  • Rob van Stee
    • 2
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations