Advertisement

The Stackelberg Minimum Spanning Tree Game on Planar and Bounded-Treewidth Graphs

  • Jean Cardinal
  • Erik D. Demaine
  • Samuel Fiorini
  • Gwenaël Joret
  • Ilan Newman
  • Oren Weimann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5929)

Abstract

The Stackelberg Minimum Spanning Tree Game is a two-level combinatorial pricing problem introduced at WADS’07. The game is played on a graph, whose edges are colored either red or blue, and where the red edges have a given fixed cost. The first player chooses an assignment of prices to the blue edges, and the second player then buys the cheapest spanning tree, using any combination of red and blue edges. The goal of the first player is to maximize the total price of purchased blue edges. We study this problem in the cases of planar and bounded-treewidth graphs. We show that the problem is NP-hard on planar graphs but can be solved in polynomial time on graphs of bounded treewidth.

Keywords

Planar Graph Parallel Composition Boundary Vertex Series Composition Short Path Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AF93]
    Abrahamson, K.R., Fellows, M.R.: Finite automata, bounded treewidth, and well-quasiordering. In: Robertson, N., Seymour, P. (eds.) Graph Structure Theory, pp. 539–564 (1993)Google Scholar
  2. [Bak94]
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)zbMATHCrossRefGoogle Scholar
  3. [BGPW08]
    Bilò, D., Gualà, L., Proietti, G., Widmayer, P.: Computational aspects of a 2-player Stackelberg shortest paths tree game. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 251–262. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. [BHK08]
    Briest, P., Hoefer, M., Krysta, P.: Stackelberg network pricing games. In: Proc. 25th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 133–142 (2008)Google Scholar
  5. [Bod96]
    Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [CDF+07]
    Cardinal, J., Demaine, E.D., Fiorini, S., Joret, G., Langerman, S., Newman, I., Weimann, O.: The Stackelberg minimum spanning tree game. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 64–76. Springer, Heidelberg (2007) (to appear in Algorithmica)CrossRefGoogle Scholar
  7. [Cou08]
    Courcelle, B.: Graph structure and monadic second-order logic: Language theoretical aspects. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 1–13. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. [DHK09]
    Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Approximation algorithms via structural results for apex-minor-free graphs. In: Proc. 36th International Colloquium on Automata, Languages and Programming, ICALP (2009)Google Scholar
  9. [DHM07]
    Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algorithms via contraction decomposition. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 278–287 (2007)Google Scholar
  10. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  11. [GvLSU09]
    Grigoriev, A., van Loon, J., Sitters, R., Uetz, M.: Optimal pricing of capacitated networks. Networks 53(1), 79–87 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Kle06]
    Klein, P.N.: A subset spanner for planar graphs, with application to subset TSP. In: Proc. 38th ACM Symposium on Theory of Computing (STOC), pp. 749–756 (2006)Google Scholar
  13. [LMS98]
    Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Management Science 44(12), 1608–1622 (1998)zbMATHCrossRefGoogle Scholar
  14. [RSM05]
    Roch, S., Savard, G., Marcotte, P.: An approximation algorithm for Stackelberg network pricing. Networks 46(1), 57–67 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [VTL82]
    Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM J. Comput. 11(2), 298–313 (1982)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean Cardinal
    • 1
  • Erik D. Demaine
    • 2
  • Samuel Fiorini
    • 1
  • Gwenaël Joret
    • 1
  • Ilan Newman
    • 3
  • Oren Weimann
    • 4
  1. 1.Université Libre de Bruxelles (ULB)BrusselsBelgium
  2. 2.MITCambridgeUSA
  3. 3.University of HaifaHaifaIsrael
  4. 4.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations