The Hand-Bot, a Robot Design for Simultaneous Climbing and Manipulation

  • Michael Bonani
  • Stéphane Magnenat
  • Philippe Rétornaz
  • Francesco Mondada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5928)

Abstract

We present a novel approach to mobile object manipulation for service in indoor environments. Current research in service robotics focus on single robots able to move, manipulate objects, and transport them to various locations. Our approach differs by taking a collective robotics perspective: different types of small robots perform different tasks and exploit complementarity by collaborating together. We propose a robot design to solve one of these tasks: climbing vertical structures and manipulating objects. Our robot embeds two manipulators that can grasp both objects or structures. To help climbing, it uses a rope to compensate for the gravity force. This allows it to free one of its manipulators to interact with an object while the other grasps a part of a structure for stabilization. Our robot can launch and retrieve the rope autonomously, allowing multiple ascents. We show the design and the implementation of our robot and demonstrate the successful autonomous retrieval of a book from a shelf.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IFR Statistical Department: World Robotics 2008. IFR Statistical Department (2008)Google Scholar
  2. 2.
    Konolige, K., Fox, D., Ortiz, C., Agno, A., Eriksen, M., Limketkai, B., Ko, J., Morisset, B., Schulz, D., Stewart, B., et al.: Centibots: Very large scale distributed robotic teams. In: Experimental Robotics: The 9th International Symposium, Springer Tracts in Advanced Robotics (STAR), pp. 131–140. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Sahin, E.: Swarm robotics: From sources of inspiration to domains of application. In: Swarm Robotics Workshop: State-of-the-art Survey, pp. 10–20. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Winfield, A.F.T., Harper, C.J., Nembrini, J.: Towards dependable swarms and a new discipline of swarm engineering. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 126–142. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Dorigo, M., Gambardella, L., Mondada, F., Floreano, D., Nolfi, S.: Swarmanoid: Towards humanoid robotic swarms, http://www.swarmanoid.org/
  6. 6.
    Groß, R., Tuci, E., Dorigo, M., Bonani, M., Mondada, F.: Object transport by modular robots that self-assemble. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp. 2558–2564 (2006)Google Scholar
  7. 7.
    Staritz, P., Skaff, S., Urmson, C., Whittaker, W.: Skyworker: a robot for assembly, inspection and maintenance of large scale orbital facilities. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, pp. 4180–4185. IEEE Press, Los Alamitos (2001)Google Scholar
  8. 8.
    Balaguer, C., Gimenez, A., Huete, A., Sabatini, A., Topping, M., Bolmsjo, G.: The MATS robot: service climbing robot for personal assistance. IEEE Robotics & Automation Magazine 13(1), 51–58 (2006)CrossRefGoogle Scholar
  9. 9.
    Hillenbrand, C., Berns, K.: Inspection of surfaces with a manipulator mounted on a climbing robot. In: 37th International Symposium on Robotics, ISR (2006)Google Scholar
  10. 10.
    Longo, D., Muscato, G.: The alicia3 climbing robot: a three-module robot for automatic wall inspection. IEEE Robotics and Automation Magazine 13(1), 42–50 (2006)CrossRefGoogle Scholar
  11. 11.
    Luk, B.L., Cooke, D.S., Galt, S., Collie, A.A., Chen, S.: Intelligent legged climbing service robot for remote maintenance applications in hazardous environments. Robotics and Autonomous Systems 53(2), 142–152 (2005)CrossRefGoogle Scholar
  12. 12.
    Zhang, H., Zhang, J., Zong, G., Wang, W., Liu, R.: Sky cleaner 3: a real pneumatic climbing robot for glass-wall cleaning. IEEE Robotics and Automation Magazine 13(1), 32–41 (2006)CrossRefGoogle Scholar
  13. 13.
    Aracil, R., Saltaren, R., Reinoso, O.: A climbing parallel robot: a robot to climb along tubular and metallic structures. IEEE Robotics and Automation Magazine 13(1), 16–22 (2006)CrossRefGoogle Scholar
  14. 14.
    Vona, M., Detweiler, C., Rus, D.: Shady: Robust Truss Climbing with Mechanical Compliances. In: International Symposium on Experimental Robotics, pp. 431–440. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Scheidegger, N., Mondada, F., Bonani, M., Siegwart, R.: Bi-pedal Robot for Rescue Operations. In: 9th International Conference on Climbing and Walking Robots, pp. 425–430 (2006)Google Scholar
  16. 16.
    Krishna, M., Bares, J., Mutschler, E.: Tethering system design for Dante II. In: Proceedings of 1997 IEEE International Conference on Robotics and Automation, 1997, vol. 2 (1997)Google Scholar
  17. 17.
    ISO Standard 11898: Road Vehicles Interchange of Digital Information - Controller Area Network - ISO 11898. International Organization for Standardization (1993)Google Scholar
  18. 18.
    Magnenat, S., Retornaz, P., Bonani, M., Longchamp, V., Mondada, F.: Aseba: a modular architecture for event-based control of complex robots (submitted for publication, 2009)Google Scholar
  19. 19.
    Magnenat, S., Mondada, F.: Aseba Meets D-Bus: From the Depths of a Low-Level Event-Based Architecture. In: IEEE TC-Soft Workshop on Event-based Systems in Robotics, EBS-RO (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Bonani
    • 1
  • Stéphane Magnenat
    • 1
  • Philippe Rétornaz
    • 1
  • Francesco Mondada
    • 1
  1. 1.EPFL-LSROLausanne

Personalised recommendations