From Morphologies of Six-, Four- and Two-Legged Animals to the HexaQuaBip Robot’s Reconfigurable Kinematics

  • Alexandre Veinguertener
  • Thierry Hoinville
  • Olivier Bruneau
  • Jean-Guy Fontaine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5928)


How can we go beyond the locomotor versatility of current legged robots? We propose an approach, called HexaQuaBip, based on merging the most prevalent legged animal morphologies in a bioinspired polymorphic yet non-modular robot, intended to be able to reconfigure in either hexapodal, quadrupedal or bipedal modes. This paper focuses on reviewing main types of 6-, 4- and 2-legged animal kinematics and results in integrating all of them into a reconfigurable kinematic structure.


Stride Length Bipedal Walk Legged Robot Modular Robot Locomotion Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bullock, S.: The fallacy of general purpose bio-inspired computing. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floreano, D., Goldstone, R.L., Vespignani, A. (eds.) Artificial Life X: Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems, pp. 540–545. The MIT Press, Bradford Books (2006)Google Scholar
  2. 2.
    Neville, N., Buehler, M.: Towards bipedal running of a six legged robot. In: 12th Yale Workshop on Adaptive and Learning Systems (2003)Google Scholar
  3. 3.
    Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: The BigDog Team: Bigdog, the rough-terrain quadruped robot. In: The International Federation of Automatic Control (2008)Google Scholar
  4. 4.
    Endo, G., Hirose, S.: Study on roller-walker (multi-mode steering control and self-contained locomotion). In: International Conference on Robotics & Automation (2000)Google Scholar
  5. 5.
    Aoi, S., Egi, Y., Ichikawa, A., Tsuchiya, K.: Experimental verification of gait transition from quadrupedal to bipedal locomotion of an oscillator-driven biped robot m. In: International Conference on Intelligent Robots and Systems (2008)Google Scholar
  6. 6.
    Aoyama, T., Sekiyama, K., Hasegawa, Y., Fukuda, T.: Analysis of relationship between limb length and joint load in quadruped walking on the slope. In: International Conference on Intelligent Robots and Systems IROS 2008, pp. 3908–3913 (2008)Google Scholar
  7. 7.
    Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with polybot. Proc. IEEE/ASME Trans. Mechatron 7(4), 442–451 (2002)CrossRefGoogle Scholar
  8. 8.
    Murata, S., Kurokawa, H.: Self-reconfigurable robots: Shape-changing cellular robots can exceed conventional robot flexibility. IEEE Robotics & Automation Magazine 14, 71–78 (2007)CrossRefGoogle Scholar
  9. 9.
    Jorgensen, M., Ostergaard, E., Lund, H.: Modular atron: modules for a self-reconfigurable robot. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 2, pp. 2068–2073 (2004)Google Scholar
  10. 10.
    Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. IEEE Transactions on Robotics 22(6), 1115–1130 (2006)CrossRefGoogle Scholar
  11. 11.
    Christensen, A., O’Grady, R., Dorigo, M.: Morphology control in a multirobot system. IEEE Robotics & Automation Magazine 11(6), 732–742 (2007)Google Scholar
  12. 12.
    Veinguertener, A., Hoinville, T., Bruneau, O., Fontaine, J.G.: Morphological design of the bio-inspired reconfigurable hexaquabip robot. In: Climbing and Walking Robots and the Support Technologies for Mobile Machines (2009)Google Scholar
  13. 13.
    Ritzmann, R.E., Quinn, R.D., Fischer, M.S.: Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Structure & Development 33, 361–379 (2004)CrossRefGoogle Scholar
  14. 14.
    Blob, R.W., Biewener, A.A.: In vivo locomotor strain in the hindlimb bones of alligator mississippiensis and iguana iguana: implications for the evolution of limb bone safety factor and non-sprawling limb posture. Journal of Experiment Biology 202, 1023–1046 (1999)Google Scholar
  15. 15.
    Goslow, G.E., Reinking, R.M., Stuart, D.G.: The cat step cycle: hind limb joint angles and muscle lengths during unrestrained locomotion. Journal of Morphology 141(1), 1–41 (1973)CrossRefGoogle Scholar
  16. 16.
    Biewener, A.A.: Biomechanical consequences of scaling. Journal of Experiment Biology 208(Pt 9), 1665–1676 (2005)CrossRefGoogle Scholar
  17. 17.
    Hanavan, E.P.: A mathematical model of the human body. AMRL TR 102, 1–149 (1964)Google Scholar
  18. 18.
    Hodgins, J.: Three-dimensional human running. In: Proc. IEEE International Conference on Robotics and Automation, vol. 4, pp. 3271–3276 (1996)Google Scholar
  19. 19.
    McKenna, M., Zeltzler, D.: Dynamic simulation of a complex human figure model with low level behavior control, vol. 5, pp. 431–456. MIT Press, Cambridge (1996)Google Scholar
  20. 20.
    Gravez, F., Bruneau, O., Ouezdou, F.: Analytical and automatic modeling of digital humanoids. International Journal of Humanoid Robotics 2, 337–359 (2005)CrossRefGoogle Scholar
  21. 21.
    Hugel, V., Hackert, R., Abourachid, A.: Exploiting bird locomotion kinematics data for robotics modeling. CoRR abs/0807.3225 (2008)Google Scholar
  22. 22.
    Tsagarakis, N.G., Laffranchi, M., Vamderborght, B., Caldwell, D.: A compact soft actuator unit for small scale human friendly robots. In: International Conference on Robotics and Automation (2009)Google Scholar
  23. 23.
    Blickhan, R., Full, R.J.: Similarity in multilegged locomotion: Bouncing like a monopode. Journal of Comparative Physiology 73, 509–517 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexandre Veinguertener
    • 1
    • 2
  • Thierry Hoinville
    • 1
    • 2
  • Olivier Bruneau
    • 1
    • 2
  • Jean-Guy Fontaine
    • 1
    • 2
  1. 1.Italian Institute of TechnologyGenovaItaly
  2. 2.Université de VersaillesVélizyFrance

Personalised recommendations