Effects of Reaction Wood on the Performance of Wood and Wood-Based Products

  • Rupert WimmerEmail author
  • Marie Johansson
Part of the Springer Series in Wood Science book series (SSWOO)


Compression wood in softwoods and tension wood in hardwoods have properties, which adversely affect its usefulness for wood products. This chapter shows that reaction wood can be associated with many unsuitable wood properties. The results vary due to the fact that definitions about occurrence and severity of reaction wood are scarcely documented. A few properties seem to be even benefitting from the presence of reaction wood: the higher smoothness of compression wood surfaces, better shear strength of compression wood, higher toughness and impact resistance when tension wood is present, lower water uptake and swelling in fibreboards containing compression wood, and higher durability against fungi of compression wood. However, these are outweighed by disadvantages, which is the reason why reaction wood has a bad reputation in industry. The problem with reaction wood is that it is in most cases mixed with normal wood, which leads to non-uniform and more variable properties. This may lead to non-uniform swelling and shrinking, causing distortions, with additional problems of reduced strength and unfavourable surface properties. Wood-based materials such as particle boards or fibreboards are generally less prone to problems associated with reaction wood than solid wood products. With knowledge-based production methods the utilization of different wood types, including reaction wood, might be feasible.


Wood Density Compression Wood Tension Wood Juvenile Wood Normal Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akbulut T, Ayrilmis N (2006) Effect of compression wood on surface roughness and surface absorption of medium density fiberboard. Silva Fennica 40(1):161–167Google Scholar
  2. Akbulut T, Koc E (2004) The effects of panel density, panel temperature and cutter sharpness during edge machining on the roughness of the surface and profiles areas of medium density fiberboard. For Prod J 54(12):67–70Google Scholar
  3. Akbulut T, Ayrilmis N, Koc E (2004) Influence of compression wood on physical and mechanical properties of medium density fiberboard. Wood Res J 49(3):17–23Google Scholar
  4. Anon (2004) EN 1995-1-1:2004: Eurocode 5 – Design of Timber StructuresGoogle Scholar
  5. Arganbright DG, Bensend DW, Manwiller FG (1970) Influence of gelatinous fibers on the shrinkage of silver maple. Wood Sci 3:83–89Google Scholar
  6. Ates S, Akyildiz MH, Ozdemir H (2009) Effects of heat treatment on Calabrian pine (Pinus brutia Ten.) wood. BioResources 4:1032–1043Google Scholar
  7. Ayrilmis N (2007) Effect of panel density on dimensional stability of medium and high density fibreboards. J Mater Sci 42:8551–8557Google Scholar
  8. Ayrilmis N (2008) Effect of compression wood on dimensional stability of medium density fiberboard. Silva Fennica 42(2):285–293Google Scholar
  9. Badia MA, Mothe F, Constant T, Nepveu G (2005) Assessment of tension wood detection based on shiny appearance for three poplar cultivars. Ann For Sci 62:43–49Google Scholar
  10. Balatinecz J, Kretschmann DE, Leclercq A (2001) Achievements in the utilization of poplarwood-guideposts for the future. For Chron 77(2):265–269Google Scholar
  11. Balatinecz J, Mertens P, De Boever L, Yukun H, Jin J, Van Acker J (2010) Poplars and willows in the world. Chapter 10. Properties, processing and utilization. Working Paper IPC/9-10, International Poplar Commission Thematic Papers. Forestry Department, Food and Agriculture Organization of the United Nations, 50 pGoogle Scholar
  12. Bamber RK (2001) A general theory for the origin of growth stresses in reaction wood: how trees stay upright. IAWA J 22(3):205–212Google Scholar
  13. Ban W, Mancosky D, Lucia L (2004) Evaluation of the pulping response of juvenile and mature black spruce compression wood. Cellulose Chem Technol 38(1–2):79–85Google Scholar
  14. Barnett JR, Jeronimodis G (2003) Wood quality and its biological basis. Blackwell Scientific Publisher, OxfordGoogle Scholar
  15. Bekhta P, Niemz P (2003) Effect of high temperature on the change of color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546Google Scholar
  16. Blanchette RA, Obst JR, Timell TE (1994) Biodegradation of compression wood and tension wood by white and brown rot fungi. Holzforschung 48(Suppl):34–42Google Scholar
  17. Boyd JD (1977) Basic cause of differentiation of tension wood and compression wood. Aust For Res 7:121–143Google Scholar
  18. Boyd JD (1980) Relationship between fibre morphology, growth strains and physical properties of wood. Aust For Res 10:337–360Google Scholar
  19. Buchholzer P (1992) Eignung von Pappelindustrieholz unterschiedlicher Klone, Altersstufen und Standorte für die Spanplattenindustrie. Holz-Zbl 17:282–283Google Scholar
  20. Bucholzer P, Roffael E (1987) Holz schnellwüchsiger Pappeln mit kurzen Umtriebszeiten als Rohstoff für die Spanplatten- und Zellstoffherstellung. Teil 1: Pappelholz als Rohstoff für die Spanplattenherstellung. Holz-Zbl 113:777–778Google Scholar
  21. Castéra P, Nepveu G, Mahé F, Valentin G (1994) A study on growth stresses, tension wood distribution and other related wood defects in poplar (Populus euramericana cv 1214): end splits, specific gravity and pulp yield. Ann For Sci 51(3):301–313Google Scholar
  22. Clair B, Thibaut B (2001) Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA J 22:121–131Google Scholar
  23. Clair B, Jaouen G, Beauchene J, Fournier M (2003) Mapping radial, tangential and longitudinal shrinkages and its relation to tension wood in discs of the tropical tree Symphonia globulifera. Holzforschung 57(6):665–671Google Scholar
  24. Clair B, Thibaut B, Sugiyama J (2005) On the detachment of gelatinous layer in tension wood fibre. J Wood Sci 51(2):218–221Google Scholar
  25. Côté WA, Day AC Jr, Simson BW, Timell TE (1966) Studies on larch arabinogalactan. I. The distribution of arabinogalactan in larch wood. Holzforschung 20:178–192Google Scholar
  26. Coutand C, Jeronimidis G, Chanson B, Loup C (2004) Comparison of mechanical properties of tension and opposite wood in Populus. Wood Sci Technol 38(2004):11–24Google Scholar
  27. Cown D, van Wyk L (2004) Profitable wood processing – what does it require good wood! N Z J For 49(1):10–15Google Scholar
  28. Davis C, Carrington C, Sun Z (2002) The influence of compression wood on the drying curves of Pinus radiata dried in dehumidifier conditions. Dry Technol 20(10):2005–2026Google Scholar
  29. De Boever L, Vansteenkiste D, Van Acker J, Stevens M (2007) End-use related physical and mechanical properties of selected fast-growing poplar hybrids (Populus trichocarpa × P. deltoides). Ann For Sci 64:621–630Google Scholar
  30. Dinwoodie JM (1966) Growth stresses in timber-a review of literature. Forestry 39:162–170Google Scholar
  31. Dogu AD, Grabner M (2010) A staining method for determining severity of tension wood. Turkish J Agric For 24:381–392Google Scholar
  32. Donaldson LA, Grace J, Downes GM (2004) Within-tree variation in anatomical properties of compression wood in radiata pine. IAWA J 25:253–271Google Scholar
  33. Du Toit AJ (1964) Probable causes of compression wood formation. For South Africa 4:25Google Scholar
  34. Dündar T, Büyüksari Ü, Avci E, Akkilic H (2012) Effect of heat treatment on the physical and mechanical properties of compression and opposite wood of black pine. BioResources 7:5009–5018Google Scholar
  35. Eder M, Arnould O, Dunlop JWC, Hornatowska J, Salmén L (2012) Experimental micromechanical characterization of wood cell walls. Wood Sci Technol. doi: 10.1007/s00226-012-0515-6 Google Scholar
  36. Emmitt S, Yeomans DT (2008) Specifying buildings: a design management perspective, 2nd edn. Elsevier, Amsterdam, 261 ppGoogle Scholar
  37. Fang CH, Clair B, Gril J, Almeras T (2007) Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain. Wood Sci Technol 41:659–671Google Scholar
  38. Fang C-H, Guibal D, Clair B, Gril J, Liu Y-M, Liu S-Q (2008) Relationships between growth stress and wood properties in poplar I-69 (Populus deltoides Bartr. cv. “Lux” ex I-69/55). Ann For Sci 65:307Google Scholar
  39. Fengel D, Wegener G (1984) Wood—chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, 613 ppGoogle Scholar
  40. Follrich J, Teischinger A, Gindl W, Müller U (2008) Adhesive bond strength of end grain joints in softwood with varying density. Holzforschung 62:237–242Google Scholar
  41. Frihart C (2005) Wood adhesion and adhesives. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC, Boca Raton, pp 215–278Google Scholar
  42. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84Google Scholar
  43. Geimer RL, Herian VL, Xu D (1997) Influence of juvenile wood on dimensional stability and tensile properties of flakeboard. Wood Fiber Sci 29(2):103–120Google Scholar
  44. Gindl W (1997) Verformungsverhalten und Rißbildung bei Fertigparkett aus dreischichtigem Massivholz. Diplomarbeit. Institut für Holzforschung, Universität für Bodenkultur, WienGoogle Scholar
  45. Gindl W (2002) Comparing mechanical properties of normal and compression wood in Norway spruce: the role of lignin in compression parallel to the grain. Holzforschung 56:395–401Google Scholar
  46. Graupner N (2008) Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J Mater Sci 43:5222–5229Google Scholar
  47. Gregorova A, Hrabalova M, Wimmer R, Saake B, Altaner C (2009) Poly(lactide acid) composites reinforced with fibers obtained from different tissue types of Picea sitchensis. J Appl Polym Sci 114(5):2616–2623Google Scholar
  48. Groom LH, Mott L, Shaler SM (1999) Relationship between fiber furnish properties and the structural performance of MDF. In: 33rd International particleboard/composite materials symposium proceedings, Washington State University, Pullman, WA, 13–15 April 1999Google Scholar
  49. Gunther B, Gotze H, Luthardt H, Schultze-Dewitz G (1972) Eigenschaften und Verwendung des Astholzes von Kiefer (Pinus silvestris L.) und Rotbuche (Fagus silvatica L.). 3. Verwendung von Astholz der Kiefer für die Herstellung von Spanplatten. Holztechnologie 13:80–87Google Scholar
  50. Hanger J, Huber H, Lackner R, Wimmer R (2002) Physical properties of domestic species after thermal-treatment. Holzforschung Holzverwertung 6:111–113Google Scholar
  51. Harris M (1977) Shrinkage and density of radiata pine compression wood in relations to its anatomy and mode of formation. N Z J For Sci 7(1):91–106Google Scholar
  52. Hill CAS (2006) Wood modification—chemical, thermal and other processes. Wiley, New YorkGoogle Scholar
  53. Hiziroglu S (2006) Oriented strand board as a building material. FAPC-145, Factsheet of the Division of Agricultural Sciences and Natural Resources, Oklahoma State UniversityGoogle Scholar
  54. Husien N, Roffael E, Hapla F (1996) Zum Nachweis von Zugholz in Holzwerkstoffen aus Pappel. Holz Roh Werkstoff 54:235–242Google Scholar
  55. Jayme G, Harders-Steinhäuser M (1953) Zugholz und seine Auswirkungen in Pappel- und Weidenholz. Holzforschung 7(2–3):39–43Google Scholar
  56. Johansson M (2003) Prediction of bow and crook in timber studs based on variation in longitudinal shrinkage. Wood Fiber Sci 35(2):445–455Google Scholar
  57. Johansson G, Kliger IR, Perstorper M (1994) Quality and performance of structural timber. N Z Timber Des J 9(3):11–20Google Scholar
  58. Jourez B, Riboux A, Leclercq A (2001a) Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. Ghoy when subjected to a gravitational stimulus. Can J For Res 31:1676–1683Google Scholar
  59. Jourez B, Riboux A, Leclercq A (2001b) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv ‘Ghoy’). IAWA J 22(2):133–157Google Scholar
  60. Knigge W, Schulz H (1966) Grundriß der Forstbenutzung. Entstehung, Eigenschaften, Verwertung und Verwendung des Holzes und anderer Forstprodukte. Hamburg, Berlin: Parey, 584 pGoogle Scholar
  61. Kolseth P, Ehrnrooth EML (1986) Mechanical softening of single wood pulp fibers. In: Bristow JA, Kolseth P (eds) Paper structure and properties. Marcel Dekker Inc., New York, pp 27–50Google Scholar
  62. Kretschmann DE, Bendtsen BA (1992) Ultimate tensile stress and modulus of elasticity of fast-grown plantation loblolly pine lumber. Wood Fiber Sci 24(2):189–203Google Scholar
  63. Lehmann WF, Geimer RL (1974) Properties of structural particleboards from Douglas fir forest residues. For Prod J 24(10):17–25Google Scholar
  64. Lim SC (1998) Tension wood in rubberwood. Timber Technol Bull (Kuala Lumpur) 5:1–3Google Scholar
  65. Lutz JF (1970) Buckle in Veneer. USDA Forest Service, USDA Forest Service. Research note FPL-0207Google Scholar
  66. Maeglin RR (1987) Juvenile wood, tension wood, and growth stress effects on processing hardwoods. In: Applying the latest research to hardwood problems: Proceedings of the 15th annual hardwood symposium of the Hardwood Research Council, 10–12 May, pp 100–107Google Scholar
  67. Maeglin RR (1988) Processing and products considerations critical in utilizing second-growth Ponderosa pine. In: Baumgartner DM, Lotan JE (eds) Ponderosa pine—the species and its management. Proceedings of symposium, September 29–October 1, 1987, Spokane. Washington State University, Pullman, pp 19–24Google Scholar
  68. Maloney TM (1977) Modern particleboard and dryprocess fiberboard manufacturing. Miller Freeman Inc., San Francisco, 672 pGoogle Scholar
  69. Mancosky DG, Ban W, Lucia L (2005) Chemical study of the variation in the bleaching and pulping response of predominantly juvenile and mature Northern Black spruce fractions. Ind Eng Chem Res 44:1652–1659Google Scholar
  70. Mark RE (1967) Cell wall mechanics of tracheids. Yale University Press, New HavenGoogle Scholar
  71. Müller U, Sretenovic A, Gindl W, Teischinger A (2004) Longitudinal shear properties of European larch wood related to cell-wall structure. Wood Fiber Sci 36(2):143–151Google Scholar
  72. Nicholls J (1982) Wind action, leaning trees and compression wood in Pinus radiata D.Don. Aust For Res 12:75–92Google Scholar
  73. Noack D (1979) Beziehungen zwischen Rohstoffeigenschaften und den Anforderungen der Verwendung. Holz Roh Werkstoff 35:112–116Google Scholar
  74. Nyström J (2002) Automatic measurement of compression wood and spiral grain for the prediction of distortion in sawn wood products. Doctoral Thesis, Luleå University of Technology, Luleå, pp 1402–1544Google Scholar
  75. Ozarska B (1999) A review of the utilisation of hardwoods for LVL. Wood Sci Technol 33:341–351Google Scholar
  76. Parham RA, Robinson KW, Isebrands JG (1977) Effects of tension wood on Kraft paper from a short-rotation hardwood (Populus “tristis No. 1”). Wood Sci Technol 11:291–303Google Scholar
  77. Passard J, Perré P (2005) Viscoelastic behaviour of green wood across the grain. Part I. Thermally activated creep tests up to 120 °C. Ann For Sci 62:707–716Google Scholar
  78. Pechmann H (1972) The microscopic structure of some wood defects. Holz Roh Werkst 30(2):62–66Google Scholar
  79. Perré P (2007) Experimental device for the accurate determination of wood–water relations on microsamples. Holzforschung 61:419–429Google Scholar
  80. Ramiah MV, Goring DAI (1965) The thermal expansion of cellulose, hemicellulose, and lignin. J Polym Sci C 11:27–48Google Scholar
  81. Reme PA, Helle T (2002) Assessment of transverse dimensions of wood tracheids using SEM and image analysis. Holz Roh Werkst 60:277–282Google Scholar
  82. Roffael E, Dix B (1988) Zur Bedeutung von schnellwüchsigen Baumarten als Rohmaterial für die Holzwerkstoffherstellung unter besonderer Berücksichtigung von Pappelholz für Spanplatten. Holz Roh Werkstoff 46:245–252Google Scholar
  83. Roffael E, Essiamah S, Diaz-vaz Olmedo JE, Schneider T, Dix B (2005) Untersuchungen über den Einfluß von Reaktionsholz (Druckholz) und Normalholz der Fichte auf die Eigenschaften von mitteldichten Faserplatten (MDF). Forstarchiv 76:206–214Google Scholar
  84. Ruelle J, Beauchene J, Thibaut A, Thibaut B (2010) Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species. Ann For Sci 64:503–510Google Scholar
  85. Ruelle J, Beauchene J, Yamamoto H, Thibaut B (2011) Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species. Wood Sci Technol 45(2):339–357Google Scholar
  86. Saadat-Nia MA, Brancheriau L, Gallet P, Enayati AA, Pourtahmasi K, Honarvar F (2011) Ultrasonic wave parameter changes during propagation through poplar and spruce reaction wood. BioResources 6(2):1172–1185Google Scholar
  87. Sandoval-Torres S, Jomaa W, Marc F, Puiggali J-R (2010) Causes of color changes in wood during drying. For Stud China 12(4):167–175Google Scholar
  88. Salmén L (2004) Micromechanical understanding of the cell-wall structure. C R Biol 327:873–880PubMedGoogle Scholar
  89. Sedlarik V, Saha N, Kuritka I, Saha P (2007) Environmentally friendly biocomposite based on waste from the dairy industry and poly (vinyl alcohol). J Appl Polym Sci 106(3):1869–1879Google Scholar
  90. Shelbourne C, Ritchie K (1968) Relationships between degree of compression wood development and specific gravity and tracheid characteristics in loblolly pine. Holzforschung 22(6):185–190Google Scholar
  91. Shi S, Walker J (2006) Wood-based composites: plywood and veneer-based products (Chapter 11). In: Walker JCF (ed) Primary wood processing. Springer, Amsterdam, pp 391–426Google Scholar
  92. Shi JL, Kocaefe D, Zhang J (2007) Mechanical behaviour of Quebéc wood species heat-treated using ThermoWood process. Holz Roh Werkstoff 65:255–259Google Scholar
  93. Skaar C (1972) Water in wood. Syracuse University Press, Syracuse, 218 pGoogle Scholar
  94. Spicer R, Gartner BL (2002) Compression wood has little impact on the water relations of Douglas-fir (Pseudotsuga menziesii) seedlings despite a large effect on shoot hydraulic properties. New Phytol 154:633–640Google Scholar
  95. Straze A, Gorisek Z (2006) Drying characteristics of compression wood in Norway spruce (Picea abies Karst.). In: Kurjatko S, Kudela J, Lagana R (eds) Wood structure and properties. Arbora Publishers, Zvolen, pp 399–403Google Scholar
  96. Stürzenbecher R, Hofstetter K, Bogensperger T, Schickhofer G, Eberhardsteiner J (2010a) Development of high-performance strand boards: engineering design and experimental investigations. Wood Sci Technol 44:13–29Google Scholar
  97. Stürzenbecher R, Hofstetter K, Bogensperger T, Schickhofer G, Eberhardsteiner J (2010b) Development of high-performance strand boards: multiscale modeling of anisotropic elasticity. Wood Sci Technol 44:205–223Google Scholar
  98. Suchsland O, Woodson GE (1991) Fiberboard manufacturing practices in the United States, USDA Forest Service, Agriculture Handbook 640, 263 pGoogle Scholar
  99. Sun C (2005) True density of microcrystalline cellulose. J Pharm Sci 94(10):2132–2134PubMedGoogle Scholar
  100. Sykacek E, Gierlinger N, Wimmer R, Schwanninger M (2006) The potential of Near-Infrared Spectroscopy to predict natural durability of larch heartwood. Holzforschung 60:643–647Google Scholar
  101. Tarmian A, Azadfallah M (2009) Variation of cell features and chemical composition in spruce consisting of opposite, normal and compression wood. BioResources 4(1):194–204Google Scholar
  102. Tarmian A, Perré P (2009) Air permeability in longitudinal and radial directions of compression wood of Picea abies L. and tension wood of Fagus sylvatica L. Holzforschung 63:352–356Google Scholar
  103. Tarmian A, Remond R, Faezipour M, Karimi A, Perré P (2009a) Reaction wood drying kinetics: tension wood in Fagus sylvatica and compression wood in Picea abies. Wood Sci Technol 43:113–130Google Scholar
  104. Tarmian A, Sepeher A, Rahimi S (2009b) Drying stress and strain in tension wood: a conventional kiln schedule to efficiently dry mixed tension/normal wood boards in poplar. Dry Technol 27(10):1033–1040Google Scholar
  105. Terashima N, Kitano K, Kojima M, Yoshida M, Yamamoto H, Westermark U (2009) Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J Wood Sci 55:409–416Google Scholar
  106. Thielemansa W, Wool RP (2004) Butyrated kraft lignin as compatibilizing agent for natural fiber reinforced thermoset composites. Composites A Appl Sci Manuf 35(3):327–338Google Scholar
  107. Timell T (1982) Recent progress in the chemistry and topochemistry of compression wood. Wood Sci Technol 16:83–122Google Scholar
  108. Timell T (1986) Compression wood in gymnosperms, vol 3. Springer, HeidelbergGoogle Scholar
  109. Wadenbäck J, Clapham D, Gellerstedt G, von Arnold S (2004) Variation in content and composition of lignin in young wood of Norway spruce. Holzforschung 58:107–115Google Scholar
  110. Wahyudi I, Okuyama T, Hadi YS, Yamamoto H, Yoshida M, Watanabe H (2000) Relationship between growth rate and growth stresses in Paraserianthes falcataria grown in Indonesia. J Trop For Prod 6:95–105Google Scholar
  111. Walker JCF (2006) Primary wood processing. Springer, Amsterdam, 596 pGoogle Scholar
  112. Wang J, Cooper P (2005) Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz Roh Werkstoff 63:417–422Google Scholar
  113. Warensjö M (2003) Compression wood in Scots pine and Norway spruce—distribution in relation to external geometry and the impact on the dimensional stability in sawn wood. Doctoral Thesis, Department of Forest Products and Markets, Swedish University of Agricultural Science, UppsalaGoogle Scholar
  114. Warensjö M, Rune G (2004) Stem straightness and compression wood in a 22-year-old stand of container-grown Scots pine trees. Silva Fennica 38(2):143–153Google Scholar
  115. Washusen R, Ilic J (2001) Relationship between transverse shrinkage and tension wood from three provenances of Eucalyptus globulus Labill. Holz Roh Werkst 59:85–93Google Scholar
  116. Washusen R, Ades P, Evans R, Ilic J, Vinden P (2001) Relationships between density, shrinkage, extractives content and microfibril angle in tension wood from three provenances of 10-year-old Eucalyptus globulus Labill. Holzforschung 55:176–182Google Scholar
  117. Washusen R, Ades P, Vinden P (2002) Tension wood occurrence in Eucalyptus globulus Labill. I. The spatial distribution of tension wood in one 11-year-old tree. Aust For 65(2):120–126Google Scholar
  118. Washusen R, Ilic J, Waugh G (2003) The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill. Holz Roh Werkst 61:299–303Google Scholar
  119. Weigl M, Müller U, Wimmer R, Hansmann C (2012) Ammonia vs. thermally modified timber – comparing physical and mechanical properties. Eur J Wood Wood Prod 70:233–239Google Scholar
  120. Wernsdörfer H, Reck P, Seeling U, Becker G, Seifert T (2004) Erkennung und Messung des Reaktionsholzes bei Fichte (Picea abies (L.) Karst.) mittels Verfahren der digitalen Bildanalyse. Holz Roh Werkst 62:243–252Google Scholar
  121. Williams DH (1971) A comparison of rates of drying of “compression” and “Normal” 4 in by 1 in P. radiata. N Z For Res Inst Forest Product Report No. 303Google Scholar
  122. Wimmer R, Grabner M (2000) A comparison of tree-ring features in Picea abies as correlated with climate. IAWA J 21(4):403–416Google Scholar
  123. Wolfe RW, King JR, Gjinolli A (2000) Dowel-Nut connection in Douglas-fir Peeler Cores. USDA Forest Service, USDA Forest Service. Research Paper FPL-RP-586Google Scholar
  124. Zabel RA, Morrell JJ (1992) Wood microbiology, decay and its prevention. Academic, Orlando, 476 ppGoogle Scholar
  125. Zhang HJ, Chui YH, Schneider MH (1994) Compression control and its significance in the manufacture and effects on properties of poplar LVL. Wood Sci Technol 28:285–290Google Scholar
  126. Zobel BJ, Sprauge JR (1998) Juvenile wood in forest trees, Springer series in wood science. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.IFA Tulln, Institute for Natural Materials Technology, Sustainable Biomaterials GroupUniversität für Bodenkultur Wien (BOKU)Tulln an der DonauAustria
  2. 2.Department of Building and Energy TechnologyLinnaeus UniversityVäxjöSweden

Personalised recommendations