Computational Electronics and 21st Century Education

  • Dragica Vasileska
Conference paper


The continued scaling of semiconductor devices and the difficulties associated with time and cost of manufacturing these novel device design has been the primary driving force for the significantly increased interest in Computational Electronics which now, in addition to theory and experiments, is being considered as a third important mode in the design and development of novel nanoscale devices. In addition to its significant role in industrial research, modeling and simulation also brings into the picture alternative education modes in which students, by running certain subset of tools that, for example, the nanoHUB offers, can get hands-on experience on the operation of nanoscale devices and can also look into the variation of internal variables that can not be measured experimentally, like the spatial variation of the electron density in the channel in the pre- and post-pichoff regime of operation, electric field profiles which can be used to tailor the electron density to avoid junction breakdown, etc. In summary, Computational Electronics is emerging as a very important field for future device design in both industry and academia.


nano-electronics semiclassical and quantum transport education 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vasileska, D., Goodnick, S.M.: Computational Electronics. Morgan and Claypool, San Francisco (2006)Google Scholar
  2. 2.
    Liu, W., Asheghi, M.: J. Appl. Phys. 98, 123523–1 (2005)CrossRefGoogle Scholar
  3. 3.
    Sondheimer, E.H.: Advances in Physics 1(1) (January 1952); reprinted in Advances in Physics 50, 499–537 (2001)Google Scholar
  4. 4.
    Palankovski, V., Selberherr, S.: Journal Microsystem Technologies 7, 183–187 (November 2001)Google Scholar
  5. 5.
    Raleva, K., Vasileska, D., Goodnick, S.M., Nedjalkov, M.: IEEE Transactions on Electron Devices 55(6), 1306–1316 (June 2008)Google Scholar
  6. 6.
    Khan, H.R., Mamaluy, D., Vasileska, D.: IEEE Trans. Electron Devices 54(4), 784–796 (2007)CrossRefGoogle Scholar
  7. 7.
    Mujica, K., Roitberg, R.: J. of Chem. Physics  104, 72–96 (1996)CrossRefGoogle Scholar
  8. 8.
    Derosa, S.: J. of Phys. Chemistry B  105, 471 (2001)CrossRefGoogle Scholar
  9. 9.
    Demkov, A., Sankey, O.: Phys. Rev. Lett. 83, 2038 (1999)Google Scholar
  10. 10.
    Demkov, A., Zhang, L., Loechelt, G.: J. of Vac. Sci. and Techn. B 18, 2388 (2000)CrossRefGoogle Scholar
  11. 11.
    Demkov, A., Zhang, Drabold: Phys. Rev. B  6412, 5306 (2001)Google Scholar
  12. 12.
    Klimeck, G., Lake, R., Datta, S., Bryant: Phys. Rev. B 50, 5484 (1994)CrossRefGoogle Scholar
  13. 13.
    Klimeck, G., Chen, Datta, S.: Phys. Rev. B  50, 2316 (1994)Google Scholar
  14. 14.
    Chen, et al.: Phys. Rev. B  50, 8035 (1994)Google Scholar
  15. 15.
    Canning, A., Wang, L.W., Williamson, A., Zunger, A.: J. of Comp. Physics 160, 29 (2000)CrossRefGoogle Scholar
  16. 16.
    Wang, L.W., Kim, J.N., Zunger, A.: Phys. Rev. B 59, 5678 (1999)CrossRefGoogle Scholar
  17. 17.
    Williamson, A.J., Wang, L.W., Zunger, A.: Phys. Rev. B 62, 12963 (2000)CrossRefGoogle Scholar
  18. 18.
    Martin, R.: Phys. Rev. B 1, 4005 (1970)Google Scholar
  19. 19.
    Sankey, O., Niklewski, D.J.: Phys. Rev. B  40, 3979 (1989)CrossRefGoogle Scholar
  20. 20.
    Ordejón, P., Drabold, D.A., Grumbach, M.P., Martin, R.M.: Phys. Rev. B 48, 14646 (1993)CrossRefGoogle Scholar
  21. 21.
    Ordejón, F., Galli, G., Car, R.: Phys. Rev. B  47, 9973 (1993)CrossRefGoogle Scholar
  22. 22.
    Vogl, P., Hjalmarson, H.P., Dow, J.D.: J. Phys. Chem. Solids  44, 365 (1983)CrossRefGoogle Scholar
  23. 23.
    Jancu, J.M., Scholz, R., Beltram, F., Bassani, F.: Phys. Rev. B  57, 6493 (1998)CrossRefGoogle Scholar
  24. 24.
    Bowen, R.C.: IEDM 1997, p. 869. IEEE, New York (1997)Google Scholar
  25. 25.
    Klimeck, G., et al.: VLSI Design 8, 79 (1997)Google Scholar
  26. 26.
    Lee, J., Klimeck, G.: Phys. Rev. B 63, 195318 (2001)CrossRefGoogle Scholar
  27. 27.
    Pryor: Phys. Rev. B  57, 7190 (1998)Google Scholar
  28. 28.
    Stier, Grundmann, Bimberg: Phys. Rev. B.  59, 5688 (1999)CrossRefGoogle Scholar
  29. 29.
    Brodone, P., Pascoli, M., Brunetti, R., Bertoni, A., Jacoboni, C.: Phys. Rev. B 59, 3060 (1998)CrossRefGoogle Scholar
  30. 30.
    Fischetti, M.V.: Phys. Rev. B 59, 4901 (1998)CrossRefGoogle Scholar
  31. 31.
    Haque, A., Khondker, A.N.: J. Appl. Phys.  87, 2553 (2000)CrossRefGoogle Scholar
  32. 32.
    Guan, D., Ravaioli, U., Giannetta, R.W., Hannan, M., Adesida, I., Melloch, M.R.: Phys. Rev. B 67, 205328 (2003)CrossRefGoogle Scholar
  33. 33.
    Datta, S.: Superlattices and Microstructures 28, 253 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dragica Vasileska
    • 1
  1. 1.Arizona State UniversityTempeUSA

Personalised recommendations