Making Peer-Assisted Content Distribution Robust to Collusion Using Bandwidth Puzzles

  • Michael K. Reiter
  • Vyas Sekar
  • Chad Spensky
  • Zhenghao Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5905)


Many peer-assisted content-distribution systems reward a peer based on the amount of data that this peer serves to others. However, validating that a peer did so is, to our knowledge, an open problem; e.g., a group of colluding attackers can earn rewards by claiming to have served content to one another, when they have not. We propose a puzzle mechanism to make contribution-aware peer-assisted content distribution robust to such collusion. Our construction ties solving the puzzle to possession of specific content and, by issuing puzzle challenges simultaneously to all parties claiming to have that content, our mechanism prevents one content-holder from solving many others’ puzzles. We prove (in the random oracle model) the security of our scheme, describe our integration of bandwidth puzzles into a media streaming system, and demonstrate the resulting attack resilience via simulations.


Packet Loss Rate Random Oracle Random Oracle Model Streaming System Collusion Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sung, Y., Bishop, M., Rao, S.: Enabling Contribution Awareness in an Overlay Broadcasting System. In: Proc. ACM SIGCOMM (2006)Google Scholar
  2. 2.
    Purandare, D., Guha, R.: BEAM: An Efficient Framework for Media Streaming. In: Proc. IEEE LCN (2006)Google Scholar
  3. 3.
    Lian, Q., Zhang, Z., Yang, M., Zhao, B.Y., Dai, Y., Li, X.: An empirical study of collusion behavior in the Maze P2P file-sharing system. In: Proc. ICDCS (2007)Google Scholar
  4. 4.
    Sirivianos, M., Park, J.H., Yang, X., Jarecki, S.: Dandelion: Cooperative Content Distribution with Robust Incentives. In: Proc. USENIX ATC (2007)Google Scholar
  5. 5.
    Dellarocas, C.: Immunizing online reputation reporting systems against unfair ratings and discriminatory behavior. In: Proc. ACM EC (2000)Google Scholar
  6. 6.
    Bhattacharjee, R., Goel, A.: Avoiding ballot stuffing in eBay-like reputation systems. In: Proc. ACM SIGCOMM P2P-ECON (2005)Google Scholar
  7. 7.
    Sirivianos, M., Park, J.H., Chen, R., Yang, X.: Free-riding in BitTorrent networks with the large view exploit. In: Proc. IPTPS (2007)Google Scholar
  8. 8.
    Liogkas, N., Nelson, R., Kohler, E., Zhang, L.: Exploiting BitTorrent for fun (but not profit). In: Proc. IPTPS (2006)Google Scholar
  9. 9.
    Adar, E., Huberman, B.A.: Free riding on Gnutella. First Monday 5 (2000)Google Scholar
  10. 10.
    Castro, M., et al.: SplitStream: High-bandwidth multicast in a cooperative environment. In: Proc. ACM SOSP (2003)Google Scholar
  11. 11.
    Huang, G.: Keynote: Experiences with PPLive. In: Proc. ACM SIGCOMM P2P-TV Workshop (2007)Google Scholar
  12. 12.
    Freedman, M.J., Freudenthal, E., Mazieres, D.: Democratizing content publication with Coral. In: Proc. NSDI (2004)Google Scholar
  13. 13.
    Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust Incentive Techniques for Peer-to-Peer Networks. In: Proc. ACM EC (2004)Google Scholar
  14. 14.
    Piatek, M., Isdal, T., Krishnamurthy, A., Anderson, T.: One hop reputations for peer to peer file sharing workloads. In: Proc. NSDI (2008)Google Scholar
  15. 15.
    Lai, K., Feldman, M., Stoica, I., Chuang, J.: Incentives for cooperation in peer-to-peer networks. In: Proc. P2P Econ (2004)Google Scholar
  16. 16.
    Aperjis, C., Freedman, M.J., Johari, R.: Peer-Assisted Content Distribution with Prices. In: Proc. CoNeXT (2008)Google Scholar
  17. 17.
    Belenkiy, M., et al.: Making P2P accountable without losing privacy. In: Proc. ACM WPES (2007)Google Scholar
  18. 18.
    Li, J., Kang, X.: Proof of service in a hybrid P2P environment. In: Proc. ISPA Workshops (2005)Google Scholar
  19. 19.
    Dwork, C., Naor, M.: Pricing via processing, or, combatting junk mail. In: Proc. CRYPTO (1993)Google Scholar
  20. 20.
    Juels, A., Brainard, J.: Client puzzles: A cryptographic defense against connection depletion attacks. In: Proc. NDSS (1999)Google Scholar
  21. 21.
    Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer, Heidelberg (2003)Google Scholar
  22. 22.
    Douceur, J.: The Sybil attack. In: Proc. IPTPS (2002)Google Scholar
  23. 23.
    Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proc. ACM CCS (2007)Google Scholar
  24. 24.
    Filho, D.L.G., Barreto, P.S.L.M.: Demonstrating data possession and uncheatable data transfer (2006),
  25. 25.
    Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and Efficient Provable Data Possession (2008),
  26. 26.
    Juels, A., Kaliski Jr., B.S.: PORs: Proofs of retrievability for large files. In: Proc. ACM CCS (2007)Google Scholar
  27. 27.
    Bowers, K., Juels, A., Oprea, A.: Proofs of Retrievability: Theory and Implementation (2008),
  28. 28.
    Shacham, H., Waters, B.: Compact Proofs of Retrievability (2008),
  29. 29.
    Yin, H., et al.: Design and Deployment of a Hybrid CDN-P2P System for Live Video Streaming: Experiences with LiveSky. In: Proc. ACM Multimedia (2009)Google Scholar
  30. 30.
    Zhang, Y., Duffield, N., Paxson, V., Shenker, S.: On the Constancy of Internet Path Properties. In: Proc. IMW (2001)Google Scholar
  31. 31.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1984)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  33. 33.
    Reiter, M.K., Sekar, V., Spensky, C., Zhang, Z.: Making contribution-aware peer-assisted content distribution robust to collusion using bandwidth puzzles. Technical Report CMU-CS-09-136, Carnegie Mellon University (2009)Google Scholar
  34. 34.
    Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A transport protocol for real-time applications. IETF RFC 3550 (July 2003)Google Scholar
  35. 35.
    White, B., et al.: An Integrated Experimental Environment for Distributed Systems and Networks. In: Proc. OSDI (2002)Google Scholar
  36. 36.
    Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-bound functions. ACM TOIT 5, 299–327 (2005)CrossRefGoogle Scholar
  37. 37.
    Goyal, V.K.: Multiple description coding: Compression meets the network. IEEE Signal Processing Magazine, 74–93 (September 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael K. Reiter
    • 1
  • Vyas Sekar
    • 2
  • Chad Spensky
    • 1
  • Zhenghao Zhang
    • 3
  1. 1.University of North CarolinaChapel HillUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA
  3. 3.Florida State UniversityTallahasseeUSA

Personalised recommendations