Evolution of Nervous Systems and Brains

  • Gerhard RothEmail author
  • Ursula Dicke


The evolution of nervous systems and brains reveals two major evolutionary trends, one leading to ring-shaped nerve systems in cnidarians and ctenophorans, the other as the main track leading to a bilaterally organized nervous system with a circumesophageal ganglion and ventral cords. From there, again two major evolutionary trends originated, one in the protostomes, the other in the deuterostomes. The former culminated in the brain of the mollusk Octopus as well as in the brains of insects, predominantly flies and hymenopterans. Among the deuterostomes, complex brains, while sharing a basic organization, likewise evolved many times independently, e.g. in some teleosts, birds, especially corvids and psittacids, and mammals, especially primates including humans. Animal as well as human intelligence is significantly correlated with the number of neurons in multimodal brain centers and their information processing capacity. Humans have the largest number of cortical neurons as well as the most efficient information-processing capacities among large-brained animals and appear to be the only lifeform with a grammatically and syntactically structured language.


Nerve Cord Brain Size Mushroom Body Antennal Lobe Optic Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Futuyma DJ (2009) Evolution, 2nd edn. Sinauer, SunderlandGoogle Scholar
  2. 2.
    Raff R (1996) The shape of life. Genes, development, and the evolution of animal form. University of Chicago Press, ChicagoGoogle Scholar
  3. 3.
    Hennig W (1966, 1979) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
  4. 4.
    Ghysen A (2003) The origin and evolution of the nervous system. Int J Dev Biol 47:555–62PubMedGoogle Scholar
  5. 5.
    Berg HC (2000) Motile behavior of bacteria. Phys Today 53:24–9CrossRefGoogle Scholar
  6. 6.
    Armus HL, Montgomery AR, Jellison JL (2006) Discrimination learning in paramecia (Paramecium caudatum). Psychol Rec 56:489–98Google Scholar
  7. 7.
    Lichtneckert R, Reichert H (2007) Origin and evolution of the first nervous systems. In: Kaas J, Bullock TH (eds) Evolution of nervous systems. A comprehensive review, vol 1, Theories, development, invertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 289–315CrossRefGoogle Scholar
  8. 8.
    Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. Freeman, San FranciscoGoogle Scholar
  9. 9.
    Satterlie RA, Spencer AN (1983) Neuronal control of ­locomotion in hydrozoan medusae. J Comp Physiol 150:195–206CrossRefGoogle Scholar
  10. 10.
    Grimmelikhuijzen CJP, Carstensen K, Darmer D, McFarlane I, Moosler A, Nothacker HP, Reinscheid RK, Rinehart KL, Schmutzler C, Vollert H (1992) Coelenterate neuropeptides: structure, action and biosynthesis. Am Zool 32:1–12Google Scholar
  11. 11.
    Hirth F, Reichert H (2007) Basic nervous system types: one or many. In: Striedter GF, Rubenstein JL (eds) Evolution of nervous systems. Theories, development, invertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 55–72CrossRefGoogle Scholar
  12. 12.
    Moroz LL (2009) On the independent origins of complex brains and neurons. BBE 74:177–90CrossRefGoogle Scholar
  13. 13.
    Paulus HF (1979) Eye structure and the monophyly of the arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New YorkGoogle Scholar
  14. 14.
    Hennig W (1972) Taschenbuch der speziellen Zoologie, Teil 2, Wirbellose II. H Deutsch, FrankfurtGoogle Scholar
  15. 15.
    Kandel ER (1976) Cellular basis of behavior – an introduction to behavioral neurobiology. WH Freeman, New YorkGoogle Scholar
  16. 16.
    Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon, OxfordGoogle Scholar
  17. 17.
    Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford Biology, OxfordGoogle Scholar
  18. 18.
    Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18:337–42PubMedCrossRefGoogle Scholar
  19. 19.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedGoogle Scholar
  20. 20.
    White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Phil T Roy Soc B 275:327–48CrossRefGoogle Scholar
  21. 21.
    Schafer WR (2005) Deciphering the neural and molecular mechanisms of C. elegans behavior. Curr Biol 15:R723–9PubMedCrossRefGoogle Scholar
  22. 22.
    Withington PM (2007) The evolution of arthropod nervous systems; insight from neural development in the Onychophora and Myriapoda. In: Kaas J, Bullock TH (eds) Evolution of nervous systems. A comprehensive review, vol 1, Theories, development, invertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 317–36CrossRefGoogle Scholar
  23. 23.
    Kästner A (1969) Lehrbuch der speziellen Zoologie, Band I, Wirbellose 1. Teil. G Fischer, StuttgartGoogle Scholar
  24. 24.
    Foelix RF (2010) Biology of spiders, 3rd edn. Oxford University Press, Oxford/New YorkGoogle Scholar
  25. 25.
    Mobbs PG (1984) Neural networks in the mushroom bodies of the honeybee. J Insect Physiol 30:43–58CrossRefGoogle Scholar
  26. 26.
    de Marco RJ, Menzel R (2008) Learning and memory in communication and navigation in insects. In: Byrne JH, Menzel R (eds) Learning theory and behavior, vol 4, Learning and memory: a comprehensive reference. Academic (Elsevier), Amsterdam/Oxford, pp 477–98Google Scholar
  27. 27.
    Strausfeld NJ, Strausfeld C, Loesel R, Rowell D, Stowe S (2006) Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc Biol Sci 7:1857–66CrossRefGoogle Scholar
  28. 28.
    Holland LZ, Short S (2008) Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain. BBE 72:91–105CrossRefGoogle Scholar
  29. 29.
    Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates, 3rd edn. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  30. 30.
    Striedter GF (2005) Brain evolution. Sinauer, SunderlandGoogle Scholar
  31. 31.
    Northcutt RG (1987) Brain and sense organs of the earliest vertebrates: reconstruction of a morphotype. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary biology of primitive fishes, vol 103, NATO ASI series, series A: life sciences. Plenum, New YorkGoogle Scholar
  32. 32.
    Northcutt RG (1989) Brain variation and phylogenetic trends in elasmobranch fishes. J Exp Zool Suppl 2:83–100PubMedCrossRefGoogle Scholar
  33. 33.
    Romer AS, Parson TS (1986) The vertebrate body. Saunders College Publishing, PhiladelphiaGoogle Scholar
  34. 34.
    Wullimann MF, Vernier P (2007) Evolution of the nervous system in fishes. In: Kaas J, Bullock TH (eds) Evolution of nervous systems. A comprehensive review, vol 2, Non-mammalian vertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 39–60CrossRefGoogle Scholar
  35. 35.
    Dicke U, Roth G (2007) Evolution of the amphibian nervous system. In: Kaas JH, Bullock TH (eds) Evolution of nervous systems. A comprehensive review, vol 2, Non-mammalian vertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 61–124CrossRefGoogle Scholar
  36. 36.
    Nieuwenhuys R, Voogd J, van Huijzen C (1988) The human central nervous system. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  37. 37.
    Karten HJ (1991) Homology and evolutionary origins of the “neocortex”. Brain Behav Evol 38:264–72PubMedCrossRefGoogle Scholar
  38. 38.
    Reiner A, Yamamoto K, Karten HJ (2005) Organization and evolution of the avian forebrain. Anat Rec A 287A:1080–102CrossRefGoogle Scholar
  39. 39.
    Medina L (2007) Do birds and reptiles possess homologues of mammalian visual, somatosensory, and motor cortices. In: Kaas J, Bullock TH (eds) Evolution of nervous systems. A comprehensive review, vol 2, Non-mammalian vertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 163–94CrossRefGoogle Scholar
  40. 40.
    Creutzfeldt OD (1983) Cortex Cerebri. Leistung, strukturelle und funktionelle Organisation der Hirnrinde. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  41. 41.
    Kaas JH (2007) Reconstructing the organization of neocortex of the first mammals and subsequent modifications. In: Kaas JH, Krubitzer LA (eds) Evolution of nervous systems. A comprehensive review, vol 3, Mammals. Academic (Elsevier), Amsterdam/Oxford, pp 27–48CrossRefGoogle Scholar
  42. 42.
    Changizi MA (2007) Scaling the brain and its connections. In: Kaas JH, Krubitzer LA (eds) Evolution of nervous systems. A comprehensive review, vol 3, Mammals. Academic (Elsevier), Amsterdam/Oxford, pp 167–80CrossRefGoogle Scholar
  43. 43.
    Güntürkün O (2008) Wann ist ein Gehirn intelligent? Spektrum der Wissenschaft 11:124–132CrossRefGoogle Scholar
  44. 44.
    Jerison HJ (1973) Evolution of the brain and intelligence. Academic, Amsterdam/OxfordGoogle Scholar
  45. 45.
    Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (­primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126–42PubMedCrossRefGoogle Scholar
  46. 46.
    Russell S (1979) Brain size and intelligence: a comparative perspective. In: Oakley DA, Plotkin HC (eds) Brain, behavior and evolution. Methuen, London, pp 126–53Google Scholar
  47. 47.
    Falk D (2007) Evolution of the primate brain. In: Henke W, Tattersall I (eds) Handbook of paleaanthropology. Primate evolution and human origins, vol 2. Springer, Berlin, pp 1133–62CrossRefGoogle Scholar
  48. 48.
    Hofman MA (2000) Evolution and complexity of the human brain: some organizing principles. In: Roth G, Wullimann MF (eds) Brain, evolution and cognition. Spektrum Akademischer Verlag, Heidelberg, pp 501–21Google Scholar
  49. 49.
    van Dongen PAM (1998) Brain size in vertebrates. In: Niewenhuys R (ed) The central nervous system of vertebrates. Springer, Berlin/Heidelberg/New York, pp 2099–134Google Scholar
  50. 50.
    Pilbeam D, Gould SJ (1974) Size and scaling in human evolution. Science 186:892–901PubMedCrossRefGoogle Scholar
  51. 51.
    Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9:250–7PubMedCrossRefGoogle Scholar
  52. 52.
    Roth G, Dicke U (2012) Evolution of the brain and intelligence in primates. Prog Brain Res 195:413–30PubMedCrossRefGoogle Scholar
  53. 53.
    Byrne R (1995) The thinking ape. Evolutionary origins of intelligence. Oxford University Press, Oxford/New YorkCrossRefGoogle Scholar
  54. 54.
    Gibson KR, Rumbaugh D, Beran M (2001) Bigger is better: primate brain size in relationship to cognition. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge/New York, pp 79–97CrossRefGoogle Scholar
  55. 55.
    Farris SM (2008) Evolutionary convergence of higher brain centers spanning the protostome-deuterostome boundary. Brain Behav Evol 72:106–22PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Brain Research InstituteUniversity of BremenBremenGermany

Personalised recommendations