Auditory Systems

Chapter

Abstract

Sound waves are the adequate physical stimulus for hearing organs of vertebrates and insects. Sound waves may originate from abiotic events, for example, from running water, breaking waves at beaches, movement of bushes and trees in the wind, howling storms, or thunder. Most interesting for animals, however, are sounds generated by other moving animals – rustling noises may signal the presence of prey or predator – or by special sound-producing organs of insects and vertebrates which use sounds in communication. The morphology of hearing organs is adapted to the physical properties of the sounds to be perceived. Central to all hearing organs are mechanoreceptors (see Chap. 16). In the present chapter, we deal with mechanoreceptors serving in hearing organs as the sensitive elements through which sound-induced motion is translated into activation of the central auditory systems of animals, thus providing information about the presence of sound waves in surrounding water or air. Sound waves traveling in and being picked up from solids are not considered here (see Chap. 16).

References

  1. 1.
    Ashmore J (2008) Cochlear outer hair cell motility. Physiol Rev 88:173–210PubMedCrossRefGoogle Scholar
  2. 2.
    Budelmann BU (1992) Hearing in nonarthopod invertebrates. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 141–155CrossRefGoogle Scholar
  3. 3.
    Buser P, Imbert M (1992) Audition. MIT Press, CambridgeGoogle Scholar
  4. 4.
    Capranica RR (1976) Morphology and physiology of the auditory system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 551–575CrossRefGoogle Scholar
  5. 5.
    Carr CE, Code RA (2000) The central auditory system of reptiles and birds. In: Dooling RJ, Fay RR (eds) Comparative hearing: birds and reptiles. Springer, Berlin Heidelberg New York, pp 197–248CrossRefGoogle Scholar
  6. 6.
    Clack JA, Allin E (2004) The evolution of single- and multiple-ossicle ears in fishes and tetrapodes. In: Manley GA, Fay RR (eds) The evolution of the vertebrate auditory system. Springer, Berlin Heidelberg New York, pp 128–163CrossRefGoogle Scholar
  7. 7.
    Ehret G (1997) The auditory midbrain, a “shunting yard” of acoustical information processing. In: Ehret G, Romand R (eds) The central auditory system. Oxford Univ Press, New York, pp 259–316Google Scholar
  8. 8.
    Ehret G (2006) Hemisphere dominance of brain function – which functions are lateralized and why? In: van Hemmen JL, Sejnowski TJ (eds) 23 problems in systems neuroscience. Oxford Univ Press, New York, pp 44–61CrossRefGoogle Scholar
  9. 9.
    Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Assoc, WinnetkaGoogle Scholar
  10. 10.
    Fritzsch B (1992) The water-to-land transition: evolution of the tetrapod basilar papilla, middle ear, and auditory nuclei. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 351–375CrossRefGoogle Scholar
  11. 11.
    Fullard JH (2006) The evolution of hearing in moths: the ears of Oenosandra boisduvalii (Noctuoidea: Oenosandridae). Aust J Zool 54:51–56CrossRefGoogle Scholar
  12. 12.
    Greenwood DD (1990) A cochlear frequency-position function for several species – 29 years later. J Acoust Soc Am 87:2592–2605PubMedCrossRefGoogle Scholar
  13. 13.
    Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012PubMedCrossRefGoogle Scholar
  14. 14.
    Hoy RR, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41:433–450PubMedCrossRefGoogle Scholar
  15. 15.
    Kaas JH (2011) The evolution of auditory cortex: the core areas. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, Berlin Heidelberg New York, pp 407–427CrossRefGoogle Scholar
  16. 16.
    Kanwal JS, Ehret G (2011) Communication sounds and their cortical representation. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, Berlin Heidelberg New York, pp 343–367CrossRefGoogle Scholar
  17. 17.
    Knudsen EI, Konishi M (1978) Space and frequency are represented separately in the auditory midbrain of the owl. J Neurophysiol 41:870–884PubMedGoogle Scholar
  18. 18.
    Konishi M, Takahashi TT, Wagner H, Sullivan WE, Carr CE (1988) Neurophysiological and anatomical substrates for sound localization in the owl. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function. The neurobiological bases of hearing. Wiley, New York, pp 721–745Google Scholar
  19. 19.
    Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455PubMedCrossRefGoogle Scholar
  20. 20.
    Malmierca MS, Ryugo DK (2011) Descending connections of auditory cortex to the midbrain and brain stem. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, Berlin Heidelberg New York, pp 189–208CrossRefGoogle Scholar
  21. 21.
    Manley GA (1990) Peripheral hearing mechanisms in reptiles and birds. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  22. 22.
    Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci U S A 97:11736–11743PubMedCrossRefGoogle Scholar
  23. 23.
    Marshall DC, Hill KB (2009) Versatile aggressive mimicry of cicadas by an Australian predatory katydid. PLoS One 4:e4185PubMedCrossRefGoogle Scholar
  24. 24.
    Mason AC, Oshinsky ML, Hoy RR (2001) Hyperacute directional hearing in a microscale auditory system. Nature 410:686–690PubMedCrossRefGoogle Scholar
  25. 25.
    McCormick CA (1992) Evolution of central auditory pathways in anamniotes. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 323–350CrossRefGoogle Scholar
  26. 26.
    Miles RN, Robert D, Hoy RR (1995) Mechanically coupled ears for directional hearing in the parasitoid fly Ormia ochracea. J Acoust Soc Am 98:3059–3070PubMedCrossRefGoogle Scholar
  27. 27.
    Nadrowski B, Effertz T, Senthilan PR, Göpfert MC (2011) Antennal hearing in insects – new findings, new questions. Hear Res 273:7–13PubMedCrossRefGoogle Scholar
  28. 28.
    Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1508–1512PubMedCrossRefGoogle Scholar
  29. 29.
    Patuzzi R (1996) Cochlear micromechanics and macromechanics. In: Dallos P, Fay RR (eds) The cochlea. Springer, Berlin Heidelberg New York, pp 186–257CrossRefGoogle Scholar
  30. 30.
    Pickles JO (2008) An introduction to the physiology of hearing, 3rd edn. Emerald, BingleyGoogle Scholar
  31. 31.
    Pollak GD (1992) Adaptations of basic structures and mechanisms in the cochlea and central auditory pathway of the mustache bat. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 751–778CrossRefGoogle Scholar
  32. 32.
    Rees A, Langer G (2005) Temporal coding in the auditory midbrain. In: Winer JA, Schreiner CE (eds) The inferior ­colliculus. Springer, Berlin Heidelberg New York, pp 346–376CrossRefGoogle Scholar
  33. 33.
    Robert D, Göpfert MC (2002) Novel schemes for hearing and acoustic orientation in insects. Curr Opin Neurobiol 12:715–720PubMedCrossRefGoogle Scholar
  34. 34.
    Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352PubMedGoogle Scholar
  35. 35.
    Romand R, Avan P (1997) Anatomical and functional aspects of the cochlear nucleus. In: Ehret G, Romand R (eds) The central auditory system. Oxford Univ Press, New York, pp 97–191Google Scholar
  36. 36.
    Römer H (1983) Tonotopic organization of the auditory neuropile in the bushcricket Tettigonia viridissima. Nature 306:60–62CrossRefGoogle Scholar
  37. 37.
    Rosowski JJ (1994) Outer and middle ears. In: Fay RR (ed) Comparative hearing: mammals. Springer, Berlin Heidelberg New York, pp 172–247CrossRefGoogle Scholar
  38. 38.
    Rouiller EM (1997) Functional organization of the auditory pathways. In: Ehret G, Romand R (eds) The central auditory system. Oxford Univ Press, New York, pp 3–96Google Scholar
  39. 39.
    Scheich H, Ohl FW (2011) A semantic concept of auditory cortex function and learning. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, Berlin Heidelberg New York, pp 369–387CrossRefGoogle Scholar
  40. 40.
    Schreiner CE, Langer G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386PubMedCrossRefGoogle Scholar
  41. 41.
    Scott SK (2005) Auditory processing – speech, space and auditory objects. Curr Opin Neurobiol 15:197–201PubMedCrossRefGoogle Scholar
  42. 42.
    Smith CA (1981) Recent advances in structural correlates of auditory receptors. Prog Sens Physiol 2:135–187CrossRefGoogle Scholar
  43. 43.
    Spoendlin H (1970) Structural basis of peripheral frequency analysis. In: Plomb R, Smoorenburg GF (eds) Frequency analysis and periodicity detection in hearing. Sijhoff, Leiden, pp 2–36Google Scholar
  44. 44.
    Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88:159–170PubMedCrossRefGoogle Scholar
  45. 45.
    Suga N (1990) Cortical computational maps for auditory imaging. Neural Netw 3:3–21CrossRefGoogle Scholar
  46. 46.
    Suga N, Gao E, Zhang Y, Ma X, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97:11807–11814PubMedCrossRefGoogle Scholar
  47. 47.
    Tavolga WN, Popper AN, Fay RR (eds) (1981) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New YorkGoogle Scholar
  48. 48.
    Terhardt E (1998) Akustische Kommunikation. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  49. 49.
    Webb JF, Fay RR, Popper AN (eds) (2008) Fish bioacoustics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  50. 50.
    Weinberger NM (2011) Reconceptualizing the primary auditory cortex: learning, memory and specific plasticity. In: Winer JA, Schreiner CE (eds) The auditory cortex. Springer, Berlin Heidelberg New York, pp 465–491CrossRefGoogle Scholar
  51. 51.
    Windmill JF, Göpfert MC, Robert D (2005) Tympanal travelling waves in migratory locusts. J Exp Biol 208:157–168PubMedCrossRefGoogle Scholar
  52. 52.
    Windmill JF, Fullard JH, Robert D (2007) Mechanics of a ‘simple’ ear: tympanal vibrations in noctuid moths. J Exp Biol 210:2637–2648PubMedCrossRefGoogle Scholar
  53. 53.
    Yager DD (1999) Structure, development, and evolution of insect auditory systems. Microsc Res Tech 47:380–400PubMedCrossRefGoogle Scholar
  54. 54.
    Ziswiler V (1976) Die Wirbeltiere, vol 1. Thieme, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of NeurobiologyUniversity of UlmUlmGermany
  2. 2.Department of Cellular Neurobiology, Schwann-Schleiden-Centre for Molecular Cell BiologyUniversity of GöttingenGöttingenGermany

Personalised recommendations