Multi-Objective Quality Assessment for EA Parameter Tuning

Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


Evolutionary algorithms are non-deterministic and highly parameterizable optimization methods. Therefore, the setting of parameters greatly influences their performance and methods for parameter tuning became more and more popular in recent years. However, obtained parameter settings are usually valid only for the tackled combination of algorithm, problem, and performance measure. In most investigations concerning EA tuning, only one performance measure is utilized, inherently defining it as ’user preference’. However, users’ preferences may be different. While one user may only look for a single best solution from a couple of runs for a design problem (single-excellent case), another may be interested in a generally stable behavior of the algorithm displayed by a good expected value of multiple runs and a low variance (robust case). An efficient handling of this trade-off is investigated here. In particular, we investigate the possibility to control the behavior of a given algorithm on a given problem between the two stated extremes via changing one or a small number of parameters.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartz-Beielstein, T. (2006). Experimental research in evolutionary computation – The new experimentalism. Natural Computing Series. Berlin: Springer.MATHGoogle Scholar
  2. Beume, N., Naujoks, B., & Emmerich, M. (2007). SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research, 181(3), 1653–1669.MATHCrossRefGoogle Scholar
  3. Coello Coello, C. A., Van Veldhuizen, D. A., & Lamont, G. B. (2002). Evolutionary algorithms for solving multi-objective problems. New York: Kluwer Academic Publishers. ISBN 0-3064-6762-3.MATHGoogle Scholar
  4. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley.MATHGoogle Scholar
  5. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  6. Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). Scalable multi-objective optimization test problems. In Congress on Evolutionary Computation (CEC 2002) (pp. 825–830). Piscataway, New Jersey: IEEE Press.Google Scholar
  7. DeJong, K. A. (2006). Evolutionary computation: A unified approach. Cambridge, MA: MIT Press.Google Scholar
  8. Eiben, A. E. & Smith, J. E. (2003). Introduction to evolutionary computing. Natural Computing Series. Berlin: Springer. ISBN: 3-540-40184-9.MATHGoogle Scholar
  9. Huang, V. L., Qin, A. K., Deb, K., Zitzler, E., Suganthan, P. N., Liang, J. J., Preuss, M., & Huband, S. (2007). Problem definitions for performance assessment of multi-objective optimization algorithms. Technical report, Nanyang Technological University, Singapore.Google Scholar
  10. Huband, S., Hingston, P., Barone, L., & While, L. (2006). A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 10(5), 477–506.CrossRefGoogle Scholar
  11. Jones, D., Schonlau, M., & Welch, W. (1998). Efficient global optimization of expensive black-box-functions. Journal of Global Optimization, 13, 455–492.MATHCrossRefMathSciNetGoogle Scholar
  12. Ponweiser, W., Wagner, T., Biermann, D., & Vincze, M. (2008). Multiobjective optimization on a limited budget of evaluations using model-assisted s-metric selection. In G. Rudolph et al. (Eds.), Parallel problem solving from nature (PPSN) (pp. 784–794). Berlin: Springer.CrossRefGoogle Scholar
  13. Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y.-P., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore, and KanGAL Report 2005005, IIT Kanpur, India.Google Scholar
  14. Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.Google Scholar
  15. Zitzler, E., Deb, K., and & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2), 173–195.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Log!n GmbHSchwelmGermany

Personalised recommendations