Advertisement

Evolutionary Algorithms and the Edge of Chaos

  • Donald Davendra
Part of the Studies in Computational Intelligence book series (SCI, volume 267)

Abstract

An unconventional approach of the edge of chaos and its application to discrete systems is described in this chapter. Langton’s approach to cellular automata and its unique ordered and chaotic behavior is discussed. The expansion of this approach to genetics and random networks by Kauffman is described with a brief analogy provided of chaos in evolutionary algorithms in terms of stagnation.

Keywords

Evolutionary Algorithm Chaotic System Cellular Automaton Cellular Automaton State Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassett, D., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E.: Adaptive reconfiguration of fractal small-world human brain functional networks. The National Academy of Sciences of the USA 103(51), 19518–19523 (2006)CrossRefGoogle Scholar
  2. 2.
    Derrida, B., Pomeau, Y.: Europhysics Letters 1, 45 (1986)CrossRefGoogle Scholar
  3. 3.
    Fronczak, P., Fronczak, A.: Critical line in undirected Kauffman Boolean networks—the role of percolation. J. Phys. A: Math. Theor. 41, 224009 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kauffman, S.: Antichaos and Adaptation. Scientific America, 78–84 (August 1991)Google Scholar
  5. 5.
    Kauffman, S.: At Home in the Universe. Oxford University Press, Oxford (1995)Google Scholar
  6. 6.
    Kitzbichler, M., Smith, M., Christensen, S., Bullmore, E.: Broadband Criticality of Human Brain Network Synchronization. PLoS Comput. Biol. 5(3), e1000314 (2009)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Langton, C.: Computation at the edge of chaos: Phase transitions and emergent computation. Physica D 42, 12–37 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Mitchell, M., Hraber, P., Crutchfield, J.: Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations. Complex Systems 7, 89–130 (1993)zbMATHGoogle Scholar
  9. 9.
    Packard, N.: Adaptation toward the edge of chaos. In: Kelso, J., Mandell, A., Shlesinger, M. (eds.) Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific, Singapore (1988)Google Scholar
  10. 10.
    Pinedo, M.: Scheduling: theory, algorithms and systems. Prentice Hall, Inc., New Jersey (1995)zbMATHGoogle Scholar
  11. 11.
    Shannon, C.: A Mathematical Theory of Communication. Bell System Technical Journal, 623–656 (October 27, 1948)Google Scholar
  12. 12.
    Shermer, M.: Exorcising Laplace’s Demon: Chaos and Antichaos, History and Metahistory. History and Theory 34(1), 59–83 (1995)CrossRefGoogle Scholar
  13. 13.
    Sole, R., Luque, B.: Phase transitions and antichaos in generalized Kauffman networks. Phys. Lett. 196, 331–334 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)zbMATHCrossRefGoogle Scholar
  15. 15.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Donald Davendra
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations