Advertisement

Chaotic Attributes and Permutative Optimization

  • Donald Davendra
  • Ivan Zelinka
  • Godfrey Onwubolu
Part of the Studies in Computational Intelligence book series (SCI, volume 267)

Abstract

Population dynamics and its relation to chaotic systems is analyzed in this Chapter. Using basic chaotic principles of attractors and edges, a dynamic population is developed, which is used to induce and retain diversity in a metaheuristic population. Simulation is done with Genetic Algorithm, Differential Evolution and Self-Organizing Migrating Algorithm on the combinatorial problem of Quadratic Assignment with promising results.

Keywords

Genetic Algorithm Differential Evolution Chaotic System Differential Evolution Algorithm Large Lyapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R., Orlin, J., Tiwari, A.: A descent genetic algorithm for the quadratic assignment problem. Comput. Oper. Res. 27, 917–934 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aihara, K., Takabe, T., Toyoda, M.: Chaotic Neural Networks. Phys. Lett. A 6, 333–340 (1990)Google Scholar
  3. 3.
    Boelte, A., Thonemann, U.: Optimizing simulated annealing schedules with genetic programming. Eur. J. Oper. Res. 92, 402–416 (1996)zbMATHCrossRefGoogle Scholar
  4. 4.
    Burkard, R., Rendl, F.: A thermodynamically motivated simulation procedure for combinatorial optimisation problems. Eur. J. Oper. Res. 17, 169–174 (1994)CrossRefGoogle Scholar
  5. 5.
    Chen, L., Kazuyuki, A.: Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks 6(8), 915–930 (1995)CrossRefGoogle Scholar
  6. 6.
    Connolly, D.: An improved annealing scheme for the QAP. Eur. J. Oper. Res. 46, 93–100 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Davendra, D.: Differential Evolution Algorithm for Flow Shop Scheduling, Bachelor Degree Thesis, University of the South Pacific (2001)Google Scholar
  8. 8.
    Davendra, D.: Hybrid Differential Evolution Algorithm for Discrete Domain Problems. Master Degree Thesis, University of the South Pacific (2003)Google Scholar
  9. 9.
    Davendra, D., Onwubolu, G.: Flow Shop Scheduling using Enhanced Differential Evolution. In: Proceeding of the 21st European Conference on Modelling and Simulation, Prague, Czech Republic, June 4–5, pp. 259–264 (2007)Google Scholar
  10. 10.
    Davendra, D., Onwubolu, G.: Enhanced Differential Evolution hybrid Scatter Search for Discrete Optimisation. In: Proceeding of the IEEE Congress on Evolutionary Computation, Singapore, September 25–28, pp. 1156–1162 (2007)Google Scholar
  11. 11.
    Davendra, D., Onwubolu, G.: Forward Backward Transformation. In: Onwubolu, G., Davendra, D. (eds.) Differential Evolution: A Handbook for Permutation-Based Combinatorial Optimization, pp. 35–80. Springer, Germany (2009)CrossRefGoogle Scholar
  12. 12.
    Davendra, D., Zelinka, I.: Optimization of Quadratic Assignment Problem using Self-Organinsing Migrating Algorithm. Comput. Informat. 28, 169–180 (2009)Google Scholar
  13. 13.
    Drezne, Z.: A new genetic algorithm for the quadratic assignment problem. INFORMS Journal on Computing 115, 320–330 (2003)CrossRefGoogle Scholar
  14. 14.
    Gambardella, L., Thaillard, E., Dorigo, M.: Ant Colonies for the Quadratic Assignment Problem. Int. J. Oper. Res. 50, 167–176 (1999)zbMATHGoogle Scholar
  15. 15.
    Gleick, J.: Chaos: Making a New Science, Vintage, USA (1987)Google Scholar
  16. 16.
    Hochbam, D.: Approximation Algorithms for NP — Hard Problems. PWS Publishing Company, USA (1997)Google Scholar
  17. 17.
    Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  18. 18.
    Ikeguchi, T., Horio, Y.: Chaos for avoiding local minima A. Mutual Connection Neural Network Dynamics (White Paper)Google Scholar
  19. 19.
    Ishi, S., Sato, M.: Chaotic potts spin model for combinatorial optimization problems. Neural Networks 10, 941–963 (1997)CrossRefGoogle Scholar
  20. 20.
    Ji, P., Yongzhong, W., Haozhao, L.: A solution method for the Quadratic Assignment Problem (QAP). In: Proceeding of the Sixth International Symposium on Operations Research and Its Applications (ISORA 2006), Xinjiang, China, August 8–12, pp. 106–117 (2006)Google Scholar
  21. 21.
    Koopmans, T., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25, 53–76 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lawler, E., Lensta, J., Rinnooy, K., Shmoys, D.: Sequencing and scheduling: algorithms and complexity. In: Graves, S., Rinnooy, K., Zipkin, P. (eds.) Logistics of Production and Inventory, pp. 445–522. North Holland, Amsterdam (1995)Google Scholar
  23. 23.
    Lin, F., Kao, C., Hsu: Applying the genetic approach to simulated annealing in solving NP-hard problems. IEEE Trans. Syst. Man Cybern. B Cybern. 23, 1752–1767 (1993)CrossRefGoogle Scholar
  24. 24.
    May, R.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)zbMATHGoogle Scholar
  25. 25.
    Misevicius, A.: An Improved Hybrid Optimization algorithm for the Quadratic Assignment Problem. Mathematical Modelling and Analysis 9(2), 149–168 (2004)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Nozawa, H.: Chaos 2. Physics D 2, 377 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Onwubolu, G.: Optimisation using Differential Evolution Algorithm. Technical Report TR-2001-05, IAS (October 2001)Google Scholar
  28. 28.
    Onwubolu, G.: Emerging Optimisation Techniques in Production Planning and Control. Imperial Collage Press, London (2002)Google Scholar
  29. 29.
    Onwubolu, G., Clerc, M.: Optimal path for automated drilling operations by a new heuristic approach using particle swamp optimisation. Int. J. Prod. Res. 42(3), 473–491 (2004)zbMATHCrossRefGoogle Scholar
  30. 30.
    Onwubolu, G., Davendra, D.: Scheduling flow shops using differential evolution algorithm. Eur. J. Oper. Res. 171, 674–679 (2006)zbMATHCrossRefGoogle Scholar
  31. 31.
    Operations Reserach Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.htm (Cited September 13, 2008)Google Scholar
  32. 32.
    Pinedo, M.: Scheduling: theory, algorithms and systems. Prentice Hall, Inc., New Jersey (1995)zbMATHGoogle Scholar
  33. 33.
    Price, K.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimisation, pp. 79–108. McGraw Hill, International, UK (1999)Google Scholar
  34. 34.
    Price, K., Storn, R.: Differential evolution (2001), http://www.ICSI.Berkeley.edu/~storn/code.html (Cited September 10, 2008)Google Scholar
  35. 35.
    Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23, 555–565 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel Comput. 17, 443–455 (1991)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)zbMATHCrossRefGoogle Scholar
  38. 38.
    Yamada, T., Aihara, K.: Nonlinear Neurodynamics and Combinatorial Optimization in Chaotic Neural Networks. J. Intell. Fuzzy Sys. 1(5), 53–68 (1997)Google Scholar
  39. 39.
    Zelinka, I.: Soma — Self Organizing Migrating Algorithm. In: Onwubolu, G., Babu, B. (eds.) New Optimization Techniques in Engineering. Springer, Germany (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Donald Davendra
    • 1
  • Ivan Zelinka
    • 1
    • 2
  • Godfrey Onwubolu
    • 3
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceVSB-TUOOstrava-PorubaCzech Republic
  3. 3.Knowledge Management & Mining, Inc.Richmond HillCanada

Personalised recommendations