Advertisement

Evolutionary Synchronization of Chaotic Systems

  • Ivan Zelinka
  • Ales Raidl
Part of the Studies in Computational Intelligence book series (SCI, volume 267)

Abstract

This chapter introduces a simple investigation on deterministic chaos synchronization by means of selected evolutionary techniques. Five evolutionary algorithms has been used for chaos synchronization here: differential evolution, self-organizing migrating algorithm, genetic algorithm, simulated annealing and evolutionary strategies in a total of 15 versions. Experiments in this chapter has been done with two different coupled systems (master — slave) — Rössler-Lorenz and Lorenz-Lorenz. The main aim of this chapter was to show that evolutionary algorithms, under certain conditions, are capable of synchronization of, at least, simple chaotic systems, when the cost function is properly defined as well as the parameters of selected evolutionary algorithm. This chapter consists of two different case studies. For all algorithms each simulation was 100 times repeated to show and check the robustness of proposed methods and experiment configurations. All data were processed to obtain summarized results and graphs.

Keywords

Cost Function Simulated Annealing Evolutionary Algorithm Differential Evolution Chaotic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyer, H.: Theory of Evolution StrategiesSpringer, New York (2001)Google Scholar
  2. 2.
    Brown, R., Rulkov, N., Tracy, E.: Modeling and synchronization chaotic system from time-series data. Phys. Rev. E 49, 3784 (1994)CrossRefGoogle Scholar
  3. 3.
    Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gonzalez-Miranda, J.: Synchronization and Control of Chaos. An introduction for scientists and engineers. Imperial College Press (2004)Google Scholar
  5. 5.
    Holland, J.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann Arbor (1975)Google Scholar
  6. 6.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Nolle, L., Goodyear, A., Hopgood, A., Picton, P., Braithwaite, N.StJ.: On Step Width Adaptation in Simulated Annealing for Continuous Parameter Optimisation. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 589–598. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Nolle, L., Zelinka, I., Hopgood, A., Goodyear, A.: Comparison of an self organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Adv. Eng. Software 36(10), 645–653 (2005)CrossRefGoogle Scholar
  9. 9.
    Pikovsky, A., Rosemblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  10. 10.
    Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, New York (1999)Google Scholar
  11. 11.
    Rulkov, N., Sushchik, M.: Robustness of synchronized chaotic oscillations. Int. J. Bifurcat Chaos Appl. Sci. Eng. 7, 625 (1997)zbMATHCrossRefGoogle Scholar
  12. 12.
    Schuster, H. (ed.): Handbook of Chaos Control. Wiley-VCH, New York (2007)Google Scholar
  13. 13.
    Sushchik, M., Rulkov, N., Tsimring, L., Abarbanel, H.: Generalized synchronization of chaos in directionally coupled chaotic systems. In: Proceedings of Intl. Symp. on Nonlinear Theory and Appl., vol. 2, pp. 949–952. IEEE, Los Alamitos (1995)Google Scholar
  14. 14.
    Wolpert, D., Macready, W.: No Free Lunch Theorems for Search, Technical Report SFITR-95-02-010, Santa Fe Institute (1995)Google Scholar
  15. 15.
    Wolpert, D., Macready, W.: No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1(67) (1997)Google Scholar
  16. 16.
    Zelinka, I.: SOMA — Self Organizing Migrating Algorithm. In: Babu, B., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New York (2004)Google Scholar
  17. 17.
    Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control. In: IFAC, Prague (2005a)Google Scholar
  18. 18.
    Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control — Extended Study. In: 19th International Conference on Simulation and Modeling (ECMS 2005), Riga, Latvia, June 1–4 (2005b)Google Scholar
  19. 19.
    Zelinka, I.: Real-time deterministic chaos control by means of selected evolutionary algorithms. Eng. Appl. Artif. Intell (2008), doi:10.1016/j.engappai.2008.07.008Google Scholar
  20. 20.
    Zelinka, I., Nolle, L.: Plasma reactor optimizing using differential evolution. In: Price, K., Lampinen, J., Storn, R. (eds.) Differential Evolution: A Practical Approach to Global Optimization, pp. 499–512. Springer, New York (2006)Google Scholar
  21. 21.
    Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Evolutionary Optimitazion of Chaos Control. Chaos, Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.07.045Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ivan Zelinka
    • 1
    • 2
  • Ales Raidl
    • 3
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceVSB-TUOOstrava-PorubaCzech Republic
  3. 3.Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic

Personalised recommendations