Conditions for the Approximate Correction of Algebras

  • Cédric Bény
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5906)

Abstract

We study the approximate correctability of general algebras of observables, which represent hybrid quantum-classical information. This includes approximate quantum error correcting codes and subsystems codes. We show that the main result of [1] yields a natural generalization of the Knill-Laflamme conditions in the form of a dimension independent estimate of the optimal reconstruction error for a given encoding, measured using the trace-norm distance to a noiseless channel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kretschmann, D., Schlingemann, D., Werner, R.F.: The information-disturbance tradeoff and the continuity of Stinespring’s representation. IEEE Transactions on Information Theory 54(4), 1708–1717 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Leung, D.W., Nielsen, M.A., Chuang, I.L., Yamamoto, Y.: Approximate quantum error correction can lead to better codes. Phys. Rev. A 56(4), 2567–2573 (1997)CrossRefGoogle Scholar
  3. 3.
    Crépeau, C., Gottesman, D., Smith, A.: Approximate quantum error-correcting codes and secret sharing schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 285–301. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Barnum, H., Knill, E.: Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43, 2097 (2002)Google Scholar
  5. 5.
    Schumacher, B., Westmoreland, M.D.: Approximate quantum error correction. Quantum Information Processing 1(1-2), 5–12 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Mandayam, P., Poulin, D.: Approximate quantum error correction. In: First International Conference on Quantum Error Correction (2007)Google Scholar
  7. 7.
    Kretschmann, D., Kribs, D.W., Spekkens, R.W.: Complementarity of private and correctable subsystems in quantum cryptography and error correction. Physical Review A 78, 032330 (2008)CrossRefGoogle Scholar
  8. 8.
    Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kribs, D., Laflamme, R., Poulin, D.: Unified and generalized approach to quantum error correction. Physical Review Letters 94(18), 180501 (2005)CrossRefGoogle Scholar
  10. 10.
    Beny, C., Kempf, A., Kribs, D.W.: Generalization of quantum error correction via the Heisenberg picture. Phys. Rev. Lett. 98(10), 100502 (2007)CrossRefGoogle Scholar
  11. 11.
    Kuperberg, G.: The capacity of hybrid quantum memory. IEEE Transactions on Information Theory 49(6), 1465–1473 (2002)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Blume-Kohout, R., Ng, H.K., Poulin, D., Viola, L.: The structure of preserved information in quantum processes (2007), arXiv:0705.4282Google Scholar
  13. 13.
    Johnston, N., Kribs, D.W., Paulsen, V.I.: Computing stabilized norms for quantum operations via the theory of completely bounded maps (2007), arXiv:0711.3636Google Scholar
  14. 14.
    Beny, C.: Unsharp pointer observables and the structure of decoherence (2008), arXiv:0802.0685Google Scholar
  15. 15.
    Beny, C.: Information flow at the quantum-classical boundary. PhD in Applied Mathematics, Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (2008)Google Scholar
  16. 16.
    Kribs, D.W., Laflamme, R., Poulin, D., Lesosky, M.: Operator quantum error correction. Quantum Information and Computation 6, 382–399 (2006)MATHMathSciNetGoogle Scholar
  17. 17.
    Watrous, J.: Semidefinite programs for completely bounded norms (2009), arXiv:0901.4709Google Scholar
  18. 18.
    Bény, C., Oreshkov, O.: General conditions for approximate quantum error correction and near-optimal recovery channels (2009), arXiv:0907.5391Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Cédric Bény
    • 1
  1. 1.Centre for Quantum TechnologiesNational University of Singapore 

Personalised recommendations