Advertisement

On the Structure of Protocols for Magic State Distillation

  • Earl T. Campbell
  • Dan E. Browne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5906)

Abstract

We present a theorem that shows that all useful protocols for magic state distillation output states with a fidelity that is upper-bounded by those generated by a much smaller class of protocols. This reduced class consists of the protocols where multiple copies of a state are projected onto a stabilizer codespace and the logical qubit is then decoded.

Keywords

Single Qubit Pauli Operator Bloch Sphere Quantum Error Correction Kraus Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steane, A.: Multiple particle interference and quantum error correction. Proc. Roy. Soc. Lond. A 452, 2551 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Gottesman, D.: Theory of fault tolerant quantum computing. Phys. Rev. A 57, 127–137 (1998)CrossRefGoogle Scholar
  3. 3.
    Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Raussendorf, R., Harrington, J., Goyal, K.: Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, Cambridge (2000)Google Scholar
  6. 6.
    Eastin, B., Knill, E.: Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102, 110502 (2009)CrossRefGoogle Scholar
  7. 7.
    Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nuclear Physics B 360, 362 (1991)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Lloyd, S.: Quantum computation with abelian anyons. Quantum Information Processing 1, 13 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Douçot, B., Vidal, J.: Pairing of Cooper pairs in a fully frustrated Josephson-junction chain. Phys. Rev. Lett. 88, 227005 (2002)CrossRefGoogle Scholar
  10. 10.
    Gottesman, D.: Stabilizer Codes and Quantum Error Correction. PhD thesis, Caltech Ph.D. Thesis (1997)Google Scholar
  11. 11.
    Anders, S., Briegel, H.J.: Fast simulation of stabilizer circuits using a graph-state reprsentation. Phys. Rev. A 73, 022334 (2006)CrossRefGoogle Scholar
  12. 12.
    Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Reichardt, B.W.: Quantum universality from magic states distillation applied to CSS codes. Quantum Information Processing 4, 251 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Reichardt, B.W.: Error-detection-based quantum fault-tolerance threshold. Algorithmica 55, 517 (2009)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Reichardt, B.W.: Quantum universality by distilling certain one- and two-qubit states with stabilizer operations. arXiv:quant-ph/0608085v1 (2006)Google Scholar
  16. 16.
    Knill, E.: Quantum computing with realistically noisy devices. Nature 434, 39 (2005)CrossRefGoogle Scholar
  17. 17.
    Campbell, E.T., Browne, D.E.: Bound States for Magic State Distillation. arXiv:0908.0836 (2009)Google Scholar
  18. 18.
    Bartlett, S.D., Sanders, B.C., Braunstein, S.L., Nemoto, K.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88(9), 097904 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Earl T. Campbell
    • 1
  • Dan E. Browne
    • 1
  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations