“Dead” Chromosomes and Their Elimination in the Neuro-Genetic Stock Index Prediction System

  • Jacek Mańdziuk
  • Marcin Jaruszewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5864)


This paper presents a method for a short-term stock index prediction. The source data comes from the German Stock Exchange (being the target market) and two other markets (Tokyo Stock Exchange and New York Stock Exchange) together with EUR/USD and USD/JPY exchange rates. Neural networks supported by a genetic algorithm (GA) are used as the prediction engine. Except for promising numerical results attained by the system the special focus in the paper is on the problem of elimination of dead chromosomes, i.e. the ones which cannot be properly assessed.


Neural Network Genetic Algorithm Hide Layer Stock Market Alive Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thawornwong, S., Enke, D.: The adaptive selection of financial and economic variables for use with artificial neural networks. Neurocomputing 56, 205–232 (2004)CrossRefGoogle Scholar
  2. 2.
    Fieldsend, J., Singh, S.: Pareto evolutionary neural networks. IEEE Transactions on Neural Networks 16(2), 338–354 (2005)CrossRefGoogle Scholar
  3. 3.
    Dempster, M., Payne, T., Romahi, Y., Thompson, G.: Computational learning techniques for intraday FX trading using popular technical indicators. IEEE Transactions on Neural Networks 12(4), 744–754 (2001)CrossRefGoogle Scholar
  4. 4.
    John, G., Miller, P., Kerber, R.: Stock selection using rule induction. IEEE Expert, 52–58 (1996)Google Scholar
  5. 5.
    Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for rule-based data understanding. Proceedings of the IEEE 92, 771–805 (2004)CrossRefGoogle Scholar
  6. 6.
    Murphy, J.: Technical Analysis of the Financial Markets. New York Institiute of Finance (1999)Google Scholar
  7. 7.
    Cover, T.: An algorithm for maximizing expected log investment return. IEEE Transactions on Information Theory 30(2), 369–373 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Schwager, J.D.: Getting started in Technical Analysis. John Wiley & Sons, Chichester (1999)Google Scholar
  9. 9.
    Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Touretzky, D. (ed.) Advances in Nueral Information Processing Systems, San Mateo, CA, USA, vol. 2, pp. 524–532. Morgan Kaufmann, San Francisco (1990)Google Scholar
  10. 10.
    LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. In: Touretzky, D. (ed.) Advances in Nueral Information Processing Systems, vol. 2, pp. 598–605. Morgan Kaufmann, San Francisco (1990)Google Scholar
  11. 11.
    Hassibi, B., Stork, D.: Secong order derivatives for network pruning: Optimal Brain Surgeon. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems, San Mateo, CA, USA, vol. 5, pp. 164–171. Morgan Kaufmann, San Francisco (1993)Google Scholar
  12. 12.
    Mańdziuk, J., Jaruszewicz, M.: Neuro-evolutionary approach to stock market prediction. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2007), Orlanodo, FL, USA, pp. 2515–2520. IEEE Press, Los Alamitos (2007)CrossRefGoogle Scholar
  13. 13.
    Jaruszewicz, M., Mańdziuk, J.: Neuro-genetic system for DAX index prediction. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 42–49. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jacek Mańdziuk
    • 1
  • Marcin Jaruszewicz
    • 1
  1. 1.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations