Coevolutionary Method for Gene Selection and Parameter Optimization in Microarray Data Analysis

  • Yingjie Hu
  • Nikola Kasabov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5864)

Abstract

This paper presents a coevolutionary algorithm based personalized modeling (cEAP) for gene selection and parameter optimization for microarray data analysis. The classification of different tumor types is a main application in microarray data analysis and of great importance in cancer diagnosis and drug discovery. However, the construction of an effective classifier involves gene selection and parameter optimization, which poses a big challenge to bioinformatics research. We have explored cEAP algorithm on four benchmark microarray datasets for gene selection and parameter optimization. The experimental results have shown that cEAP is an efficient method for co-evolving complex optimization problems in microarray data analysis.

Keywords

Coevolutionary genetic algorithm optimization and gene selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shastry, B.: Pharmacogenetics and the concept of individualized medicine. Pharmacogenetics 6(1), 16–21 (2006)Google Scholar
  2. 2.
    Kasabov, N.: Global, local and personalized modelling and pattern discovery in bioinformatics: An integrated approach. Pattern Recognition Letters 28(6), 673–685 (2007)CrossRefGoogle Scholar
  3. 3.
    Potter, M.A.: The Design and Analysis of a Computational Model of Cooperative Coevolution. PhD thesis, George Mason University (1997)Google Scholar
  4. 4.
    Tibshirani, R.: A simple method for assessing sample sizes in microarray experiments. BMC Bioinformatics 7(106) (2006)Google Scholar
  5. 5.
    Kasabov, N., Middlemiss, M., Lane, T.: A generic connectionist-based method for on-line feature selection and modelling with a case study of gene expression data analysis. In: Conferences in Research and Practice in Information Technology Series: Proceedings of the First Asia-Pacific bioinformatics conference on Bioinformatics 2003, Adelaide, Australia, vol. 19, pp. 199–202. Australian Computer Society, Inc (2003)Google Scholar
  6. 6.
    Potter, M.A., De Jong, K.A.: Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)CrossRefGoogle Scholar
  7. 7.
    Ficici, S., Pllack, J.: A game-theoretic approach to the simple coevolutionary algorithm. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 467–476. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Transactions on Evolutionary Computation 3(4), 287–297 (1999)CrossRefGoogle Scholar
  9. 9.
    Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America 96, 6745–6750 (1999)CrossRefGoogle Scholar
  10. 10.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mersirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  11. 11.
    Gordon, G.J., Jensen, R., Hsiao, L.L., Hsiaox, S., Je, B.: Translation of microarray data into clinically relevant cancer diagnostic tests using gege expression ratios in lung cancer and mesothelioma. Cancer Research 62, 4963–4967 (2002)Google Scholar
  12. 12.
    Petricoin, E.F., Ardekani, A.M., Ben A Hitt, P.J.L., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., Liotta, L.A.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002)CrossRefGoogle Scholar
  13. 13.
    Pang, S., Havukkala, I., Hu, Y., Kasabov, N.: Bootstrapping consistency method for optimal gene selection from microarray gene expression data for classification problems. In: Zhang, Y.Q., Rajapakse, J.C. (eds.) Machine Learning for Bioinformatics, pp. 89–111. John Wiley & Sons, Inc., New Jersey (2008)CrossRefGoogle Scholar
  14. 14.
    Hu, Y.: Gene Selection Based On Consistency Modelling, Algorithms And Applications - Genetic Algorithm Application. In: Bioinformatics Data Analysis. Vdm Verlag, Saarbrücken (2008)Google Scholar
  15. 15.
    Hu, Y., Song, Q., Kasabov, N.: Personalized modeling based gene selection for microarray data analysis. In: Kóppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part I. LNCS, vol. 5506, pp. 1221–1228. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yingjie Hu
    • 1
  • Nikola Kasabov
    • 1
  1. 1.The Knowledge Engineering and Discovery Research InstituteAuckland University of TechnologyNew Zealand

Personalised recommendations