Ontology Based Personalized Modeling for Type 2 Diabetes Risk Analysis: An Integrated Approach

  • Anju Verma
  • Maurizio Fiasché
  • Maria Cuzzola
  • Pasquale Iacopino
  • Francesco C. Morabito
  • Nikola Kasabov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5864)


A novel ontology based type 2 diabetes risk analysis system framework is described, which allows the creation of global knowledge representation (ontology) and personalized modeling for a decision support system. A computerized model focusing on organizing knowledge related to three chronic diseases and genes has been developed in an ontological representation that is able to identify interrelationships for the ontology-based personalized risk evaluation for chronic diseases. The personalized modeling is a process of model creation for a single person, based on their personal data and the information available in the ontology. A transductive neuro-fuzzy inference system with weighted data normalization is used to evaluate personalized risk for chronic disease. This approach aims to provide support for further discovery through the integration of the ontological representation to build an expert system in order to pinpoint genes of interest and relevant diet components.


disease ontology integrated approach personalized modeling diabetes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kasabov, N.: Global, local and personalized modeling and profile discovery in Bioinformatics: An integrated approach. Pattern Recognition Letters 28(6), 673–685 (2007)CrossRefGoogle Scholar
  2. 2.
    Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  3. 3.
    Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce, 2nd edn. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  4. 4.
    Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What are ontologies, and why do we need them? Intelligent Systems and Their Applications 14, 20–26 (1999)CrossRefGoogle Scholar
  5. 5.
    Owens, A.: Semantic Storage: Overview and Assessment. Technical Report IRP Report 2005, Electronics and Computer Science, U of Southampton (2005)Google Scholar
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, May 17 (2001)Google Scholar
  7. 7.
    The FIELD Study Investigators, The need for a large-scale trial of fibrate therapy in diabetes: the rationale and design of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. ISRCTN64783481. Cardiovascular Diabetology 2004, 3, 9 (2004)Google Scholar
  8. 8.
    New Zealand Guidelines Group. Management of diabetes. New Zealand Guidelines Group, Wellington (2003(a)) (Retrived),
  9. 9.
    Brown, J.B., Palmer, A.J., et al.: The Mt. Hood challenge: cross-testing two diabetes simulation models. Diabetes Research and Clinical Practice 50(3), S57–S64 (2000(a))CrossRefGoogle Scholar
  10. 10.
    Brown, J.B., Russell, A., et al.: The global diabetes model: user friendly version 3.0. Diabetes Research and Clinical Practice 50(3), S15–S46 (2000(b))CrossRefGoogle Scholar
  11. 11.
    Lindstrom, J., Tuomilehto, J.: The diabetes risk score. A practical tool to predict type-2 diabetes risk. Diabetes Care 26(3), 725–731 (2003)CrossRefGoogle Scholar
  12. 12.
    Eddy, D.M., Schlessinger, L.: Archimedes. A trial-validated model of diabetes. Diabetes Care 26(11), 3093–3101 (2003(a))CrossRefGoogle Scholar
  13. 13.
    Eddy, D.M., Schlessinger, L.: Validation of the Archimedes diabetes model. Diabetes Care 26(11), 3102–3110 (2003(b))CrossRefGoogle Scholar
  14. 14.
    Al-Lawati, J.A., Tuomilehto, J.: Diabetes risk score in Oman: A tool to identify prevalent type-2 diabetes among Arabs of the Middle East. Diabetes Research and Clinical Practice 77, 438–444 (2007)CrossRefGoogle Scholar
  15. 15.
    Cornelis, M., Qi, L., et al.: Joint effects of common genetic variants on the risk of type-2 diabetes in U. S. men and woemen of European ancestry. Annals of Internal Medicine 150, 541–550 (2009)Google Scholar
  16. 16.
    Stern, M., Williams, K., et al.: Validation of prediction of diabetes by the Archimedes Model and comparison with other predictiong models. Diabetes Care 31(8), 1670–1671 (2008)CrossRefGoogle Scholar
  17. 17.
    Song, Q., Kasabov, N.: TWNFI - a transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling. Neural Networks 19(10), 1591–1596 (2006)zbMATHCrossRefGoogle Scholar
  18. 18.
    Fischer, J., Koch, L., et al.: Inactivation of the Fto gene protects from obesity. Nature 458, 894–899 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anju Verma
    • 1
  • Maurizio Fiasché
    • 2
    • 3
  • Maria Cuzzola
    • 3
  • Pasquale Iacopino
    • 3
  • Francesco C. Morabito
    • 2
  • Nikola Kasabov
    • 1
  1. 1.Knowledge Engineering and Discovery Research InstituteAuckland University of TechnologyAuckland
  2. 2.DIMETUniversity Mediterranea of Reggio CalabriaItaly
  3. 3.Transplant Regional Center of Stem Cells and Cellular Therapy, ”A. Neri”Reggio CalabriaItaly

Personalised recommendations