Advertisement

Pareto Optimal Based Evolutionary Approach for Solving Multi-Objective Facility Layout Problem

  • Kazi Shah Nawaz Ripon
  • Kyrre Glette
  • Omid Mirmotahari
  • Mats Høvin
  • Jim Tørresen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5864)

Abstract

Over the years, various evolutionary approaches have been proposed in efforts to solve the facility layout problem (FLP). Unfortunately, most of these approaches are limited to a single objective only, and often fail to meet the requirements for real-world applications. To date, there are only a few multi-objective FLP approaches have been proposed. However, they are implemented using weighted sum method and inherit the customary problems of this method. In this paper, we propose an evolutionary approach for solving multi-objective FLP using multi-objective genetic algorithm that presents the layout as a set of Pareto optimal solutions optimizing both quantitative and qualitative objective simultaneously. Experimental results obtained with the proposed algorithm on test problems taken from the literature are promising.

Keywords

Multi-objective facility layout problem Pareto optimal solutions Quantitative objective Qualitative objective 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michael, H.H., Ming-Jaan, W.: Using Genetic Algorithms on Facilities Layout Problems. Int. J. Adv. Manuf. Technol. 23, 301–310 (2004)CrossRefGoogle Scholar
  2. 2.
    Singh, S.P., Singh, V.K.: An Improved Heuristic Approach for Multi-Objective Facility Layout Problem. Int. J. Prod. Res. iFirst, 1–24 (2009)Google Scholar
  3. 3.
    Ye, M., Zhou, G.: A Local Genetic Approach to Multi-Objective, Facility Layout Problems with Fixed Aisles. Int. J. Prod. Res. 45(22), 5243–5264 (2007)zbMATHGoogle Scholar
  4. 4.
    Chen, C.-W., Sha, D.Y.: Heuristic Approach for Solving the Multi-Objective Facility Layout Problem. Int. J. Prod. Res. 43(21), 4493–4507 (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Shouman, M.A., Nawara, G.M., Mohamed, H.E., El Shaer, R.H.: Genetic Algorithm Approach for Solving Multi-Objective Facility Layout Problem. Alexandria Engineering Journal 43(3), 285–295 (2004)Google Scholar
  6. 6.
    Grosan, C., Abraham, A., Tigan, S., Chang, T.G.: How to Solve a Multicriterion Problem for Which Pareto Dominance Relationship Cannot Be Applied? A Case Study from Medicine. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4253, pp. 1128–1135. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  8. 8.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  9. 9.
    Pareto, V.: Cours D’Economie Politique, Rouge, Lausanne, Switzerland (1896)Google Scholar
  10. 10.
    Kusiak, A., Heragu, S.S.: The Facility Layout Problem. Eur. J. Oper. Res. 29, 229–251 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chwif, L., Marcos, R.P.B., Lucas, A.M.: A Solution to The Facility Layout Problem Using Simulated Annealing. Comput. Ind. 36, 125–132 (1998)CrossRefGoogle Scholar
  12. 12.
    Chiang, W.C., Kouvelis, P.: An Improved Tabu Search Heuristic for Solving Facility Layout Design Problems. Int. J. Prod. Res. 34(9), 2565–2585 (1996)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kluendran, B., Velappan, S., Balamurugan, I.: Manufacturing Facilities layout Design using Genetic Algorithm. Int. J. Manufacturing and Management 14(3/4), 461–474 (2008)CrossRefGoogle Scholar
  14. 14.
    Al-Hakim, L.: On Solving Facility Layout Problems using Genetic Algorithms. Int. J. Prod. Res. 38(11), 2573–2582 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Singh, S.P., Sharma, R.R.K.: A Review of Different Approaches to the Facility Layout Problems. Int. J. Adv. Manuf. Technol. 30, 425–433 (2006)CrossRefGoogle Scholar
  16. 16.
    Suresh, G., Vinod, V.V., Sahu, S.: A Genetic Algorithm for Facility Layout. Int. J. Prod. Res. 33(12), 3411–3423 (1995)zbMATHCrossRefGoogle Scholar
  17. 17.
    Nugent, C.E., Vollmann, T.E., Ruml, J.: An Experimental Comparison of Techniques for the Assignment of Facilities to Locations. Operations Research 16(1), 150–173 (1968)CrossRefGoogle Scholar
  18. 18.
    Dutta, K.N., Sahu, S.: A Multigoal Heuristic for Facilities Design Problems: MUGHAL. Int. J. Prod. Res. 20(2), 147–154 (1982)CrossRefGoogle Scholar
  19. 19.
    Chan, K.C., Tansri, H.: A Study of Genetic Crossover Operations on the Facility Layout Problem. Computers & Industrial Engineering 126(3), 537–550 (1994)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Tavakkoli, M.R., Shayan, E.: Facilities Layout Design by Genetic Algorithms. Computers and Industrial Engineering 35(3/4), 527–530 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kazi Shah Nawaz Ripon
    • 1
  • Kyrre Glette
    • 1
  • Omid Mirmotahari
    • 1
  • Mats Høvin
    • 1
  • Jim Tørresen
    • 1
  1. 1.Deptartment of InformaticsUniversity of OsloNorway

Personalised recommendations