Asymptotic Resource Usage Bounds

  • Elvira Albert
  • Diego Alonso
  • Puri Arenas
  • Samir Genaim
  • German Puebla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5904)


When describing the resource usage of a program, it is usual to talk in asymptotic terms, such as the well-known “big O” notation, whereby we focus on the behaviour of the program for large input data and make a rough approximation by considering as equivalent programs whose resource usage grows at the same rate. Motivated by the existence of non-asymptotic resource usage analyzers, in this paper, we develop a novel transformation from a non-asymptotic cost function (which can be produced by multiple resource analyzers) into its asymptotic form. Our transformation aims at producing tight asymptotic forms which do not contain redundant subexpressions (i.e., expressions asymptotically subsumed by others). Interestingly, we integrate our transformation at the heart of a cost analyzer to generate asymptotic upper bounds without having to first compute their non-asymptotic counterparts. Our experimental results show that, while non-asymptotic cost functions become very complex, their asymptotic forms are much more compact and manageable. This is essential to improve scalability and to enable the application of cost analysis in resource-aware verification/certification.


Resource Usage Cost Relation Asymptotic Form Ranking Function Recursive Call 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic Inference of Upper Bounds for Recurrence Relations in Cost Analysis. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 221–237. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design and Implementation of a Cost and Termination Analyzer for Java Bytecode. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 113–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Albert, E., Genaim, S., Gómez-Zamalloa, M.: Live Heap Space Analysis for Languages with Garbage Collection. In: ISMM. ACM Press, New York (2009)Google Scholar
  5. 5.
    Braberman, V., Fernández, F., Garbervetsky, D., Yovine, S.: Parametric Prediction of Heap Memory Requirements. In: ISMM. ACM Press, New York (2008)Google Scholar
  6. 6.
    Chin, W.-N., Nguyen, H.H., Qin, S., Rinard, M.C.: Memory Usage Verification for OO Programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 70–86. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Chin, W.-N., Nguyen, H.H., Popeea, C., Qin, S.: Analysing Memory Resource Bounds for Low-Level Programs. In: ISMM. ACM Press, New York (2008)Google Scholar
  8. 8.
    Debray, S.K., Lin, N.W.: Cost analysis of logic programs. TOPLAS 15(5) (1993)Google Scholar
  9. 9.
    Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: precise and efficient static estimation of program computational complexity. In: POPL, pp. 127–139. ACM, New York (2009)Google Scholar
  10. 10.
  11. 11.
    Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Generation. Prentice Hall, New York (1993)zbMATHGoogle Scholar
  12. 12.
    Navas, J., Méndez-Lojo, M., Hermenegildo, M.: User-Definable Resource Usage Bounds Analysis for Java Bytecode. In: BYTECODE. Elsevier, Amsterdam (2009)Google Scholar
  13. 13.
    Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Sands, D.: Complexity Analysis for a Lazy Higher-Order Language. In: Jones, N.D. (ed.) ESOP 1990. LNCS, vol. 432, pp. 361–376. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Wegbreit, B.: Mechanical Program Analysis. Comm. of the ACM 18(9) (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Elvira Albert
    • 1
  • Diego Alonso
    • 1
  • Puri Arenas
    • 1
  • Samir Genaim
    • 1
  • German Puebla
    • 2
  1. 1.DSICComplutense University of MadridMadridSpain
  2. 2.CLIPTechnical University of MadridMadridSpain

Personalised recommendations