Advertisement

Taking Fuzzy-Rough Application to Mars

Fuzzy-Rough Feature Selection for Mars Terrain Image Classification
  • Changjing Shang
  • Dave Barnes
  • Qiang Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5908)

Abstract

This paper presents a novel application of fuzzy-rough set-based feature selection (FRFS) for Mars terrain image classification. The work allows the induction of low-dimensionality feature sets from sample descriptions of feature patterns of a much higher dimensionality. In particular, FRFS is applied in conjunction with multi-layer perceptron and K-nearest neighbor based classifiers. Supported with comparative studies, the paper demonstrates that FRFS helps to enhance the effectiveness and efficiency of conventional classification systems, by minimizing redundant and noisy features. This is of particular significance for on-board image classification in future Mars rover missions.

Keywords

Feature Selection Hide Node Feature Selection Technique Mars Exploration Rover Panoramic Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castano, R., et al.: Current results from a rover science data analysis system. In: Proc. of IEEE Aerospace Conf. (2006)Google Scholar
  2. 2.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley & Sons, New York (2001)zbMATHGoogle Scholar
  3. 3.
    Huang, K., Aviyente, S.: Wavelet feature selection for image classification. IEEE Trans. Image Proc. 17, 1709–1720 (2008)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Trans. Fuzzy Syst. 17(4), 824–838 (2009)CrossRefGoogle Scholar
  6. 6.
    Jensen, R., Shen, Q.: Computational intelligence and feature selection: rough and fuzzy approaches. IEEE Press/Wiley (2008)Google Scholar
  7. 7.
    Kachanubal, T., Udomhunsakul, S.: Rock textures classification based on textural and spectral features. Proc. of World Academy of Science, Eng. and Tech. 29, 110–116 (2008)Google Scholar
  8. 8.
    Kim, W.S., Steele, R.D., Ansar, A.I., Al, K., Nesnas, I.: Rover-Based visual target tracking validation and mission infusion. AIAA Space. 6717-6735 (2005)Google Scholar
  9. 9.
    Lepisto, L., Kunttu, I., Visa, A.: Rock image classification based on k-nearest neighbour voting. Vis. Im. and Sig. Proc., IEE Proc. 153(4), 475–482 (2006)CrossRefGoogle Scholar
  10. 10.
    Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Patt. Anal. and Mach. Inte. 26, 530–549 (2004)CrossRefGoogle Scholar
  11. 11.
    Rumelhart, D., Hinton, E., Williams, R.: Learning internal representations by error propagating. In: Rumelhart, D., McClell, J. (eds.) Parallel Distributed Processing. MIT Press, Cambridge (1986)Google Scholar
  12. 12.
    Thompson, D.R., Castano, R.: Performance comparison of rock detection algorithms for autonomous planetary geology. In: Proc. of IEEE Aerospace Conf. paper no. 1251 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Changjing Shang
    • 1
  • Dave Barnes
    • 1
  • Qiang Shen
    • 1
  1. 1.Dept. of Computer ScienceAberystwyth UniversityWalesUK

Personalised recommendations