Rough Set Based Social Networking Framework to Retrieve User-Centric Information

  • Santosh Kumar Ray
  • Shailendra Singh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5908)


Social networking is becoming necessity of the current generation due to its usefulness in searching the user’s interest related people around the world, gathering information on different topics, and for many more purposes. In social network, there is abundant information available on different domains by means of variety of users but it is difficult to find the user preference based information.Also it is very much possible that relevant information is available in different forms at the end of other users connected in the same network. In this paper, we are proposing a computationally efficient rough set based method for ranking of the documents. The proposed method first expands the user query using WordNet and domain Ontologies and then retrieves documents containing relevant information. The distinctive point of the proposed algorithm is to give more emphasis on the concept combination based on concept presence and its position instead of term frequencies to retrieve relevant information. We have experimented over a set of standard questions collected from TREC, Wordbook, WorldFactBook and retrieved documents using Google and our proposed method. We observed significant improvement in the ranking of retrieved documents.


Rough sets Document Ranking Concept Extraction Social Domain Networking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpert, J., Hajaj, N.: We Knew the Web was Big (2008),
  2. 2.
    Bao, Y., Aoyama, S., Yamada, K., Ishii, N., Du, X.: A Rough Set Based Hybrid Method to Text Categorization. In: Second international conference on web information systems engineering (WISE 2001), vol. 1, pp. 254–261. IEEE Computer Society, Washington (2001)Google Scholar
  3. 3.
    Choochaiwattana, W., Spring, M.B.: Applying Social Annotations to Retrieve and Re-rank Web Resources. In: Proceedings of the International Conference on Information Management and Engineering, pp. 215–219. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar
  4. 4.
    Crestani, F., Lalmas, M., Rijsbergen, J., Campbell, L.: Is This Document Relevant? ...Probably. A Survey of Probabilistic Models in Information Retrieval. ACM Computing Surveys 30(4), 528–552 (1998)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Jensen, R., Shen, Q.: A Rough Set-Aided System for Sorting WWW Bookmarks. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 95–105. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Lee, D.L., Chuang, H., Seamons, K.: Document Ranking and the Vector Space Model. IEEE Software 14(2), 67–75 (1997)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Marlow, C., Naaman, M., Boyd, D., Davis, A.: Position Paper, tagging, Taxonomy, Flickr, Article, To Read. In: Proceedings of the 17th ACM Conference on Hypertext and Hypermedia (HT 2006) (August 2006)Google Scholar
  10. 10.
  11. 11.
    Ray, S.K., Singh, S., Joshi, B.P.: Question Answering Systems Performance Evaluation – To Construct an Effective Conceptual Query Based on Ontologies and WordNet. In: Proceedings of the 5th Workshop on Semantic Web Applications and Perspectives, Rome, Italy, December 15-17. CEUR Workshop Proceedings, pp. 1613–1673 (2008)Google Scholar
  12. 12.
    Rocha, C., Schwabe, D., de Aragão, P.M.: A Hybrid Approach for Searching in the Semantic Web. In: 13th International Conference on World Wide Web, pp. 374–383. ACM, New York (2004)CrossRefGoogle Scholar
  13. 13.
    Salton, G., Fox, E.A., Wu, H.: Extended Boolean Information Retrieval. Communications of the ACM 26(11), 1022–1036 (1983)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Singh, S., Dey, L.: A Rough-Fuzzy Document Grading System for Customized Text Information Retrieval. Information Processing and Management: an International Journal 41(2), 195–216 (2005)MATHCrossRefGoogle Scholar
  15. 15.
    Tiun, S., Abdullah, R., Kong, T.E.: Automatic Topic Identification using Ontology Hierarchy. In: Gelbukh, A. (ed.) CICLing 2001. LNCS, vol. 2004, pp. 444–453. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Vallet, D., Fernández, M., Castells, P.: An Ontology-Based Information Retrieval Model. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 455–470. Springer, Heidelberg (2005)Google Scholar
  17. 17.
  18. 18.
    Wirken, D.: The Google Goal Of Indexing 100 Billion Web Pages (2006),
  19. 19.
  20. 20.
    Xu, Y., Wang, B., Li, J.T., Jing, H.: An Extended Document Frequency Metric for Feature Selection in Text Categorization. In: Li, H., Liu, T., Ma, W.-Y., Sakai, T., Wong, K.-F., Zhou, G. (eds.) AIRS 2008. LNCS, vol. 4993, pp. 71–82. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Zhou, D., Bian, J., Zheng, S., Zha, H., Giles, C.L.: Exploring social annotations fro information retrieval. In: Proceedings of International World Wide Web Conference, WWW 2008 (April 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Santosh Kumar Ray
    • 1
  • Shailendra Singh
    • 2
  1. 1.Birla Institute of Technology, MesraInternational CentreMuscatOman
  2. 2.Samsung India Software CentreNoidaIndia

Personalised recommendations