Covering Based Approaches to Rough Sets and Implication Lattices

  • Pulak Samanta
  • Mihir Kumar Chakraborty
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5908)


This paper deals with a survey of some aspects of covering based approaches to rough set theory and their implication lattices.


Rough sets Partition Covering Implication Lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonikowski, Z.: A Certain Copnception of the Calculus of Rough Sets. Notre Dame J. Formal Logic 33, 412–421 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bunder, M.W., Banerjee, M., Chakraborty, M.K.: Some Rough Consequence Logics and their Interrelations. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets VIII. LNCS, vol. 5084, pp. 1–20. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Chakraborty, M.K., Banerjee, M.: Rough dialogue and implication lattices. Fundamenta Informaticae 75(1-4), 123–139 (2007)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Chakraborty, M.K., Samanta, P.: Consistency-Degree Between Knowledges. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 133–141. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Liu, J., Liao, Z.: The sixth type of covering-based rough sets. In: GrC 2008 IEEE International Conference on Granular Computing 2008, pp. 438–441 (2008)Google Scholar
  6. 6.
    Pal, S.K., Polkowski, L., Skowron, A.: Rough - Neural Computing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.). Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Pawlak, Z.: ROUGH SETS - Theoritical Aspects of Reasoning About Data. Kluwer Academic Publisher, Dordrecht (1991)Google Scholar
  8. 8.
    Pomykala, J.A.: Approximation, Similarity and Rough Constructions. ILLC Prepublication Series for Computation and Complexity Theory CT-93-07, University of AmsterdamGoogle Scholar
  9. 9.
    Li, T.-J.: Rough Approximation Operators in Covering Approximation Spaces. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 174–182. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Qin, K., Gao, Y., Pei, Z.: On Covering Rough Sets. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 34–41. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Samanta, P., Chakraborty, M.K.: On Extension of Dependency and Consistency Degrees of Two Knowledges Represented by Covering. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 351–364. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Slezak, D., Wasilewski, P.: Granular Sets–Foundations and Case Study of Tolerance Spaces. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 435–442. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Journal of Information Sciences 109, 21–47 (1998)zbMATHCrossRefGoogle Scholar
  15. 15.
    Yao, Y.Y.: On generalizing rough set theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 44–51. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Zhu, W.: Topological approaches to covering rough sets. ScienceDirect. Information Sciences 177, 1499–1508 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zhu, W., Wang, F.-Y.: Relationship among Three Types of Covering Rough Sets. In: Proc. IEEE Int’l Conf. Grannuler Computing (GrC 2006), May 2006, pp. 43–48 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pulak Samanta
    • 1
  • Mihir Kumar Chakraborty
    • 2
  1. 1.Department of MathematicsKatwa College, KatwaBurdwanIndia
  2. 2.Department of Pure MathematicsUniversity of CalcuttaKolkataIndia

Personalised recommendations