Advertisement

Calcium Isotopes as Tracers of Biogeochemical Processes

  • Laura C. NielsenEmail author
  • Jennifer L. Druhan
  • Wenbo Yang
  • Shaun T. Brown
  • Donald J. DePaolo
Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

The prevalence of calcium as a major cation in surface and oceanic environments, the necessity of calcium in the functioning of living cells and bone growth, and the large spread in mass between calcium isotopes all suggest that calcium isotope biogeochemistry can be an important avenue of insight into past and present biogeochemical cycling processes. In the following chapter, we review the main areas of research where Ca isotope studies have been pursued and detail recent research results in biogeochemical applications. In marine environments, biogenic fractionation of Ca isotopes during biomineralization produces predictable offsets in some organisms, which facilitate the reconstruction of seawater δ44/40Ca over geologic timescales. In terrestrial studies, observed Ca isotope fractionation between soil and various components of vegetation enables the construction of a local Ca budget and provides a partial explanation for the scale of Ca isotopic variability within a single watershed. The research reviewed in this chapter provides a foundation for future investigations into the macro- and microscopic processes and biochemical pathways dictating the distribution of this essential nutrient using stable Ca isotope ratios.

Keywords

Thermal Ionization Mass Spectrometry Fractionation Factor CaCO3 Precipitation Bulk Silicate Earth Geologic Timescale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research on the biogeochemistry of Ca isotopes by the authors has been supported by the National Science Foundation (NSF EAR-9526997; NSF EAR-9909639; NSF EAR-0838168), a NASA Astrobiology Institute grant (BioMARS; NAI02-0024-0006), and by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231 to the Lawrence Berkeley National Laboratory.

References

  1. Allemand D, Ferrier-Pagès C, Furla P et al (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. C R Palevol 3:453–467Google Scholar
  2. Amini M, Eisenhauer A, Böhm F et al (2008) Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14°45′N). Geochim Cosmochim Acta 72:4107–4122Google Scholar
  3. Amtmann A, Blatt M (2009) Regulation of macronutrient transport. New Phytol 181:35–52Google Scholar
  4. Baum BR (1978) The genus Tamarix. The Israel Academy of Sciences and Humanities, JerusalemGoogle Scholar
  5. Bentov S, Erez J (2006) Impact of biomineralization processes on the Mg content of foraminiferal shells: a biological perspective. Geochem Geosphys Geosyst 7:1–11Google Scholar
  6. Berner R, Lasaga A, Garrels R (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683Google Scholar
  7. Böhm F, Eisenhauer A, Heuser A, Kiessling W, Wallmann K (2005) Calcium isotope fractionation during dolomitization. GeoErlangen, Schriften Deutsch Ges Geowissensch 39.Google Scholar
  8. Böhm F, Gussone N, Eisenhauer A et al (2006) Calcium isotope fractionation in modern scleractinian corals. Geochim Cosmochim Acta 70:4452–4462Google Scholar
  9. Broecker W, Peng T (1982) Tracers in the sea. Eldigo Press, New YorkGoogle Scholar
  10. Bullen T, Walczyk T (2009) Environmental and biomedical applications of natural metal stable isotope variations. Elements 5:381–385Google Scholar
  11. Carpenter S, Lohmann K (1992) Sr/Mg ratios of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate. Geochim Cosmochim Acta 56:1837–1849Google Scholar
  12. Cenki-Tok B, Chabaux F, Lemarchand D et al (2009) The impact of water-rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case). Geochim Cosmochim Acta 73:2215–2228Google Scholar
  13. Chang V, Williams R, Makishima A et al (2004) Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochem Biophys Res Commun 323:79–85Google Scholar
  14. Chu N, Henderson G, Belshaw N et al (2006) Establishing the potential of Ca isotopes as proxy for consumption of dairy products. Appl Geochem 21:1656–1667Google Scholar
  15. Clementz M, Holden P, Koch P (2003) Are calcium isotopes a reliable monitor of trophic level in marine settings? Int J Osteoarchaeol 13:29–36Google Scholar
  16. Clode P, Marshall A (2003) Calcium associated with fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220:153–161Google Scholar
  17. Cuif J, Dauphin Y (2005) The environment recording unit in coral skeletons – a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibers. Biogeoscience 2:61–73Google Scholar
  18. De La Rocha C, DePaolo D (2000) Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289:1176–1178Google Scholar
  19. DePaolo D (2004) Calcium isotope variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. In: Johnson C, Beard B, Albarede F (eds) Reviews in mineralogy and geochemistry: geochemistry of the non-traditional stable isotopes, 52. Mineralogical Society of America, WashingtonGoogle Scholar
  20. DePaolo D (2011) Theory of isotopic and trace element fractionation during precipitation of carbonate minerals from aqueous solutions: surface reaction control limit. Geochim Cosmochim Acta 75:1039–1056Google Scholar
  21. Eisenhauer A, Nägler T, Stille P et al (2004) Proposal for international agreement on Ca notation resulting from discussions at workshops on stable isotope measurements held in Davos (Goldschmidt 2002) and Nice (EGS-AGU-EUG 2003). Geostand Geoanal Res 28:149–151Google Scholar
  22. Eisenhauer A, Kisakürek B, Böhm F (2009) Marine calcification: an alkali earth metal isotope perspective. Elements 5:365–368Google Scholar
  23. Erez J (1982) Calcification rates, photosynthesis and light in planktonic foraminifera. In: Westbroek P, De Jong E (eds) Biomineralization and biological metal accumulation. Reidel, DordrechtGoogle Scholar
  24. Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. In: Dove P, De Yoreo J, Weiner S (eds) Reviews in mineralogy and geochemistry: biomineralization, vol 54. Mineralogical Society of America, WashingtonGoogle Scholar
  25. Ewing S, Yang W, DePaolo D et al (2008) Non-biological fractionation of stable Ca isotopes in soils of the Atacama desert, Chile. Geochim Cosmochim Acta 72:1096–1110Google Scholar
  26. Fantle M (2010) Evaluating the Ca isotope proxy. Am J Sci 310:194–230Google Scholar
  27. Fantle M, DePaolo D (2005) Variations in the marine Ca cycle over the past 20 millino years. Earth Planet Sci Lett 237:102–117Google Scholar
  28. Fantle M, DePaolo D (2007) Ca isotopes in carbonate sediment and pore fluid from ODP site 807A: the Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim Cosmochim Acta 71:2524–2546Google Scholar
  29. Fantle M, Bullen T (2009) Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry. Chem Geol 258:50–64Google Scholar
  30. Farkaš J, Böhm F, Wallmann K et al (2007) Calcium isotope record of Phanerozoic oceans: implications for chemical evolution of seawater and its causative mechanisms. Geochim Cosmochim Acta 71:5117–5134Google Scholar
  31. Fietzke J, Eisenhauer A, Gussone N et al (2004) Direct measurement of 44Ca/40Ca ratios by MC-ICP-MS using the cool plasma technique. Chem Geol 206:11–20Google Scholar
  32. Fletcher I, Maggi A, Rosman K et al (1997) Isotopic abundance measurements of K and Ca using a wide-dispersion multi-collector mass spectrometer and low-fractionation isonisation techniques. Int J Mass Spectrom Ion Process 163:1–17Google Scholar
  33. Griffith E, Paytan A, Caldeira K et al (2008a) A dynamic marine calcium cycle during the past 28 million years. Science 322:1671–1674Google Scholar
  34. Griffith E, Paytan A, Kozdon R et al (2008b) Influences on the fractionation of calcium isotopes in planktonic foraminifera. Earth Planet Sci Lett 268:124–136Google Scholar
  35. Gussone N, Eisenhauer A, Heuser A et al (2003) Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochim Cosmochim Acta 67:1375–1382Google Scholar
  36. Gussone N, Eisenhauer A, Tiedemann R et al (2004) δ44Ca, δ18O and Mg/Ca reveal Caribbean Sea surface temperature and salinity fluctuations during the pliocene closure of the Central-American gateway. Earth Planet Sci Lett 227:201–214Google Scholar
  37. Gussone N, Böhm F, Eisenhauer A et al (2005) Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta 69:4485–4494Google Scholar
  38. Gussone N, Langer G, Thoms S et al (2006) Cellular calcium pathways and isotope fractionation in Emiliania huxleyi. Geology 34:625–628Google Scholar
  39. Gussone N, Hönisch B, Heuser A et al (2009) A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers. Geochim Cosmochim Acta 73:7241–7255Google Scholar
  40. Gussone M, Zonneveld K, Kuhnert H (2010) Minor element and Ca isotope composition of calcareous dinoflagellate cysts of cultured Thoracosphaera heimii. Earth Planet Sci Lett 289:180–188Google Scholar
  41. Halicz L, Galy A, Belshaw N et al (1999) High-precision measurement of calcium isotopes in carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). J Anal At Spectrom 14:1835–1838Google Scholar
  42. Heuser A, Eisenhauer A, Gussone N et al (2002) Measurement of calcium isotopes (δ44Ca) using a multicollector TIMS technique. Int J Mass Spec 220:385–397Google Scholar
  43. Heuser A, Eisenhauer A (2008) The calcium isotope composition (δ44/40Ca) of NIST SRM 915b and NIST SRM 1486. Geostand Newsl J Geostand Geoanal 32:311–315Google Scholar
  44. Heuser A, Eisenhauer A (2010) A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance. Bone 45:889–896Google Scholar
  45. Heuser A, Eisenhauer A, Böhm F et al (2005) Calcium isotope (δ44/40Ca) variations of Neogene planktonic foraminifera. Paleoceanography 20:1–13Google Scholar
  46. Hippler D, Schmidtt A, Gussone N et al (2003) Calcium isotopic composition of various reference materials and seawater. Geostand Newsl J Geostand Geoanal 27:13–19Google Scholar
  47. Hippler D, Eisenhauer A, Nägler T (2006) Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140ka. Geochim Cosmochim Acta 70(90):100Google Scholar
  48. Hippler D, Kozdon R, Darling K et al (2007) Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.). Biogeosci Discuss 4:3301–3330Google Scholar
  49. Hippler D, Kozdon R, Darling K et al (2009) Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.). Biogeosci Discuss 4:3301–3330Google Scholar
  50. Hirata T, Tanoshima M, Suga A et al (2008) Isotopic analysis of calcium in blood plasma and bone from mouse samples by multiple collector-ICP-mass spectrometry. Anal Sci 24:1501–1507Google Scholar
  51. Holbrèque F, Meibom A, Cuif J-P et al (2009) Strontium-86 labeling experiments show spatially heterogeneous skeletal formation in the scleractinian coral Porites porites. Geophys Res Lett 36:L04604Google Scholar
  52. Holcomb M, Cohen A, Gabitov R et al (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73:4166–4179Google Scholar
  53. Holmden C (2005) Measurement of δ44Ca using a 42Ca-43Ca double-spike TIMS technique: summary of investigations. In: Saskachewan Geological Survey, Sask Industry Resources, Misc Rep 1:A-4Google Scholar
  54. Holmden C (2009) Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston Basin: implications for subsurface dolomitization and local Ca cycling. Chem Geol 268:180–188Google Scholar
  55. Holmden C, Bélanger N (2010) Ca isotope cycling in a forested ecosystem. Geochim Cosmochim Acta 74:995–1015Google Scholar
  56. Horwitz E, McAlister D, Bond A et al (2005) Novel extraction of chromatographic resins based on Tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr Ion Exch 23:319–344Google Scholar
  57. Huang S, Farkaš J, Jacobsen S (2010) Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth Planet Sci Lett 292:337–344Google Scholar
  58. Kasemann S, Hawkesworth C, Pravec A et al (2005) Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth Planet Sci Lett 231:73–86Google Scholar
  59. Kasemann S, Schmidt D, Pearson P et al (2008) Biological and ecological insights into Ca isotopes in planktic foraminifers as a paleotemperature proxy. Earth Planet Sci Lett 271:292–302Google Scholar
  60. Kisakürek B, Eisenhauer A, Böhm F et al (2008) Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth Planet Sci Lett 273:260–269Google Scholar
  61. Komiya T, Suga A, Ohno T et al (2008) Ca isotopic compositions of dolomite, phosphorite and the oldest animal embryo fossils from the Neoproterozoic in Weng’an. S China Gondwana Res 14:209–218Google Scholar
  62. Lasaga A, Berner R, Garrels R (1985) An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years. In: Sundquist E, Broecker W (eds) The carbon cycle and atmospheric CO2: natural variations archean to present. American Geophysical Union, WashingtonGoogle Scholar
  63. Lemarchand D, Wasserburg G, Papanastassiou D (2004) Rate-controlled calcium isotope fractionation in synthetic calcite. Geochim Cosmochim Acta 68:4665–4678Google Scholar
  64. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  65. Marriott C, Henderson G, Belshaw N et al (2004) Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet Sci Lett 222:615–624Google Scholar
  66. Millero F (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–677Google Scholar
  67. Nägler T, Eisenhauer A, Müller A et al (2000) δ44Ca-temperature calibration on fossil and cultured Globigerinoides sacculifer: new tool for reconstruction of past sea surface temperatures. Geochem Geophys Geosyst 1:2000GC000091Google Scholar
  68. Page B, Bullen T, Mitchell M (2008) Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry 88:1–13Google Scholar
  69. Payne J, Turchyn A, Paytan A et al (2010) Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci USA 107:8543–8548Google Scholar
  70. Perakis S, Maguire D, Bullen T et al (2006) Coupled nitrogen and calcium cycles in forests of the Oregon coast range. Ecosystems 9:63–74Google Scholar
  71. Reynard L, Henderson G, Hedges R (2010) Calcium isotope ratios in animal and human bone. Geochim Cosmochim Acta 74:3735–3750Google Scholar
  72. Richter F, Davis A, DePaolo D (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923Google Scholar
  73. Robinson T (1965) Geological Survey Professional Paper 491-A: introduction, spread and areal extent of saltcedar (Tamarix) in the Western States. United States Government Printing Office, WashingtonGoogle Scholar
  74. Rollion-Bard C, Vigier N, Spezzaferri S (2007) In situ measurements of calcium isotopes by ion microprobe in carbonates and application to foraminifera. Chem Geol 244:679–690Google Scholar
  75. Rudge J, Reynolds B, Bourdon B (2009) The double spike toolbox. Chem Geol 265:420–431Google Scholar
  76. Russell W, Papanastassiou D, Tombrello T (1978) Ca isotope fractionaion on the Earth and other solar system materials. Geochim Cosmochim Acta 42:1075–1090Google Scholar
  77. Schmitt A, Stille P (2005) The source of calcium in wet atmospheric deposits: Ca-Sr isotope evidence. Geochim Cosmochim Acta 69:3463–3468Google Scholar
  78. Schmitt A, Bracke G, Stille P et al (2001) The calcium isotope composition of modern seawater determined by thermal ionisation mass spectrometry. Geostand Newsl J Geostand Geoanal 25:267–275Google Scholar
  79. Schmitt A, Stille P, Vennemann T (2003a) Variations of the 44Ca/40Ca ratio in seawater during the past 24 million years: evidence from δ44Ca and δ18O values of Miocene phosphates. Geochim Cosmochim Acta 67:2607–2614Google Scholar
  80. Schmitt A, Chabaux F, Stille P (2003b) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet Sci Lett 213:503–518Google Scholar
  81. Sime N, De La Rocha C, Galy A (2005) Negligible temperature dependence of calcium isotope fractionation in 12 species of planktonic foraminifera. Earth Planet Sci Lett 232:51–66Google Scholar
  82. Sime N, De La Rocha C, Tipper E et al (2007) Interpreting the Ca isotope record of marine biogenic carbonates. Geochim Cosmochim Acta 71:3979–3989Google Scholar
  83. Simon J, DePaolo D (2010) Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett 289:457–466Google Scholar
  84. Skulan J (1999) Calcium isotopes and the evolution of terrestrial reproduction in vertebrates. PhD Dissertation, University of California, BerkeleyGoogle Scholar
  85. Skulan J, DePaolo D (1999) Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates. Proc Natl Acad Sci USA 96:13709–13713Google Scholar
  86. Skulan J, DePaolo D, Owens T (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim Cosmochim Acta 61:2505–2510Google Scholar
  87. Skulan J, Bullen T, Anbar A et al (2007) Natural calcium isotopic composition of urine as a marker of bone mineral balance. Clin Chem 53:1155–1158Google Scholar
  88. Soudry D, Segal I, Nathan Y et al (2004) 44Ca/42Ca and 143Nd/144Nd isotope variations in Cretaceous-Eocene Tethyan francolites and their bearings on phosphogenesis in the southern Tethys. Geology 32:389–392Google Scholar
  89. Steuber T, Buhl D (2006) Calcium-isotope fractionation in selected modern and ancient marine carbonates. Geochim Cosmochim Acta 70:5507–5521Google Scholar
  90. Tambutté E, Allemand D, Zoccola D et al (2007) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26:517–529Google Scholar
  91. Tang J, Dietzel M, Böhm F et al (2008) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: II. Ca isotopes. Geochim Cosmochim Acta 72:3733–3745Google Scholar
  92. Tipper E, Galy A, Bickle M (2006) Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: implications for the oceanic Ca cycle. Earth Planet Sci Lett 247:267–279Google Scholar
  93. von Blanckenburg F, Wiren N, Guelke M et al (2009) Fractionation of metal stable isotopes by higher plants. Elements 5:375–380Google Scholar
  94. White P, Broadley M (2003) Calcium in plants. Ann Bot 92:487–511Google Scholar
  95. Wiegand B, Chadwick O, Vitousek P et al (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawaii. Geophys Res Lett 32:L11404. doi: 10.1029/2005GL022746 CrossRefGoogle Scholar
  96. Yang W, Spencer R, Krouse H (1996) Stable sulfur isotope hydrogeochemical studies using desert shrubs and tree rings, Death Valley, California, USA. Geochim Cosmochim Acta 60:3015–3022Google Scholar
  97. Zhu P, Macdougall J (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim Cosmochim Acta 62:1691–1698Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Laura C. Nielsen
    • 1
    • 2
    Email author
  • Jennifer L. Druhan
    • 1
    • 2
  • Wenbo Yang
    • 1
    • 2
  • Shaun T. Brown
    • 2
  • Donald J. DePaolo
    • 1
    • 2
  1. 1.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA
  2. 2.Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations