Oxygen Isotope Dynamics of Atmospheric Nitrate and Its Precursor Molecules

  • Greg MichalskiEmail author
  • S. K. Bhattacharya
  • David F. Mase
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


The stable oxygen isotopic composition of atmospheric nitrate is a powerful proxy for assessing what oxidation pathways are important for converting nitrogen oxides into nitrate. Large 18O enrichments and excess 17O (i.e. mass independent composition) are observed in atmospheric nitrate collected across the globe. These isotope enrichments and their variability in space and time have been linked to the magnitude of ozone oxidation. Attempts to model the oxygen isotope enrichments using simplified isotope mass balance assumptions and photochemical models have yielded reasonably good agreement between observations and simulations. However, there is a lack of atmospheric nitrate isotope measurements across a range of different atmospheric environments. Isotopes of oxygen in atmospheric nitrate can be utilized to assess changes in atmospheric chemistry, applied as tracers in nitrate deposition studies, and used to assess the atmosphere’s chemical response to environmental change over time using ice core nitrate.


Oxygen Isotope Tropospheric Ozone Peroxy Radical Kinetic Isotope Effect Ozone Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexander B, Hastings MG, Allman DJ et al (2009) Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate. Atmos Chem Phys 9:5043–5056Google Scholar
  2. Amberger A, Schmidt HL (1987) Natural isotope content of nitrate as an indicator of its origin. Geochim Cosmochim Acta 51:2699–2705Google Scholar
  3. Araguas-Araguas L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355Google Scholar
  4. Barkan E, Luz B (2003) High-precision measurements of 17O/16O and 18O/16O of O2 and O2/Ar ratio in air. Rapid Commun Mass Spectrom 17:2809–2814Google Scholar
  5. Barkan E, Luz B (2005) High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun Mass Spectrom 19:3737–3742Google Scholar
  6. Bhattacharya SK, Pandey A, Savarino J (2008) Determination of intramolecular isotope distribution of ozone by oxidation reaction with silver metal. J Geophys Res 113. doi: 10.1029/2006JD008309
  7. Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59Google Scholar
  8. Böhlke JK, Mroczkowski SJ, Coplen TB (2003) Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid Commun Mass Spectrom 17:1835–1846Google Scholar
  9. Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39. doi: 10.1029/2003WR002086
  10. Brown SS, Stark H, Ryerson TB et al (2003) Nitrogen oxides in the nocturnal boundary layer: simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3. J Geophys Res 108. doi: 10.1029/2002JD002917 Google Scholar
  11. Buda AR, DeWalle DR (2009) Using atmospheric chemistry and storm track information to explain the variation of nitrate stable isotopes in precipitation at a site in central Pennsylvania, USA. Atmos Environ 43:4453–4464Google Scholar
  12. Bunton CA, Halevi EA, Llewellyn DR (1952) Oxygen exchange between nitric acid and water. Part 1. J Chem Soc:4913–4916Google Scholar
  13. Burns DA, Kendall C (2002) Analysis of δ15N and δ18O to differentiate NO3- sources at two watersheds in the Catskill Mountains of New York. Water Resour Res 38. doi: 10.1029/2001WR000292 Google Scholar
  14. Campbell DH, Kendall C, Chang CCY et al (2002) Pathways for nitrate release from an alpine watershed: determination using δ15N and δ18O. Water Resour Res 38. doi: 10.1029/2001WR000294 Google Scholar
  15. Casciotti KL, Sigman DM, Hastings MG et al (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912Google Scholar
  16. Chang CCY, Langston J, Riggs M et al (1999) A method for nitrate collection for δ15N and δ18O analysis from waters with low nitrate concentrations. Can J Fish Aquat Sci 56:1856–1864Google Scholar
  17. Cliff SS, Thiemens MH (1994) High precision isotopic determination of the 18O/16O and 17O/16O ratio in nitrous oxide. Anal Chem 66:2791–2793Google Scholar
  18. Dieke GH, Crosswhite HM (2010) The ultraviolet bands of OH fundamental data. J Quant Spectrosc Radiat Transfer 111:1516–1542Google Scholar
  19. Dole M, Lane GA, Rudd DP et al (1954) Isotopic composition of atmospheric oxygen and nitrogen. Geochim Cosmochim Acta 6:65–78Google Scholar
  20. Dubey MK, Mohrschladt R, Donahue NM, Anderson JG (1997) Isotope-specific kinetics of hydroxyl radical (OH) with water (H2O): testing models of reactivity and atmospheric fractionation. J Phys Chem A 101:1494–1500Google Scholar
  21. Durka W, Schulze ED, Gebauer G et al (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767Google Scholar
  22. Elliott EM, Kendall C, Boyer EW et al (2009) Dual nitrate isotopes in dry deposition: utility for partitioning NOx source contributions to landscape nitrogen deposition. J Geophys Res 114. doi: 10.1029/2008JG000889
  23. Freyer HD (1991) Seasonal-variation of 15N/14N ratios in atmospheric nitrate species. Tellus Ser B 43:30–44Google Scholar
  24. Galloway JN (1995) Acid deposition: perspectives in time and space. Water Air Soil Pollut 85:15–24Google Scholar
  25. Galloway JN (1998) The global nitrogen cycle: changes and consequences. Environ Pollut 102:15–24Google Scholar
  26. Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226Google Scholar
  27. Gao YQ, Marcus RA (2001) Strange and unconventional isotope effects in ozone formation. Science 293:259–263Google Scholar
  28. Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262Google Scholar
  29. Gellene GI (1996) An explanation for symmetry-induced isotopic fractionation in ozone. Science 274:1344–1346Google Scholar
  30. Guenther J, Krankowsky D, Mauersberger K (2000) Third-body dependence of rate coefficients for ozone formation in 16O/18O mixtures. Chem Phys Lett 324:31–36Google Scholar
  31. Hales HC, Ross DS, Lini A (2007) Isotopic signature of nitrate in two contrasting watersheds of Brush Brook, Vermont, USA. Biogeochemistry 84:51–66Google Scholar
  32. Hallquist M, Stewart DJ, Baker J et al (2000) Hydrolysis of N2O5 on submicron sulfuric acid aerosols. J Phys Chem A 104:3984–3990Google Scholar
  33. Hastings MG, Sigman DM, Lipschultz F (2003) Isotopic evidence for source changes of nitrate in rain at Bermuda. J Geophys Res 108. doi: 10.1029/2003JD003789 Google Scholar
  34. Hathorn BC, Marcus RA (1999) An intramolecular theory of the mass-independent isotope effect for ozone. I. J Chem Phys 111:4087–4100Google Scholar
  35. Hathorn BC, Marcus RA (2000) An intramolecular theory of the mass-independent isotope effect for ozone II. Numerical implementation at low pressures using a loose transition state. J Chem Phys 113:9497–9509Google Scholar
  36. Heidenreich JE III, Thiemens MH (1983) A non-mass-dependent isotope effect in the production of ozone from molecular oxygen. J Chem Phys 78:892–895Google Scholar
  37. Herzberg G (1966) Infrared and Raman spectra of polyatomic molelcules, 2nd edn. Krieger, MalabarGoogle Scholar
  38. Horita J, Wesolowski DJ (1994) Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical-temperature. Geochim Cosmochim Acta 58:3425–3437Google Scholar
  39. Jaegle L, Jacob DJ, Brune WH et al (2000) Photochemistry of HOx in the upper troposphere at northern midlatitudes. J Geophys Res 105:3877–3892Google Scholar
  40. Johnston JC, Thiemens MH (1997) The isotopic composition of tropospheric ozone in three environments. J Geophys Res 102:25395–25404Google Scholar
  41. Kaiser J (2009) Reformulated 17O correction of mass spectrometric stable isotope measurements in carbon dioxide and a criticak appraisal of historic absolute carbon and oxygen isotope ratios. Geochim Cosmochim Acta 72:1312–1334Google Scholar
  42. Kaiser J, Hastings MG, Houlton BZ et al (2007) Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal Chem 79:599–607Google Scholar
  43. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471Google Scholar
  44. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. Elsevier Science B.V, Amsterdam, pp 519–576Google Scholar
  45. Komatsu DD, Ishimura T, Nakagawa F et al (2008) Determination of the 15N/14N, 17O/16O, and 18O/16O ratios of nitrous oxide by using continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom 22:1587–1596Google Scholar
  46. Kornexl BE, Gehre M, Hofling R et al (1999) On-line δ18O measurement of organic and inorganic substances. Rapid Commun Mass Spectrom 13:1685–1693Google Scholar
  47. Krankowsky D, Bartecki F, Klees GG et al (1995) Measurement of heavy isotope enrichment in tropospheric ozone. Geophys Res Lett 22:1713–1716Google Scholar
  48. Krankowsky D, Lammerzahl P, Mauersberger K (2000) Isotopic measurements of stratospheric ozone. Geophys Res Lett 27:2593–2595Google Scholar
  49. Kunasek SA, Alexander B, Steig EJ et al (2008) Measurements and modeling of Δ17O of nitrate in snowpits from Summit, Greenland. J Geophys Res 113. doi: 10.1029/2008JD010103
  50. Liang MC, Irion FW, Weibel JD et al (2006) Isotopic composition of stratospheric ozone. J Geophys Res 111. doi: 10.1029/2005JD006342
  51. Luz B, Barkan E (2005) The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry. Geochim Cosmochim Acta 69:1099–1110Google Scholar
  52. Lyons JR (2001) Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere. Geophys Res Lett 28:3231–3234Google Scholar
  53. Majoube M (1971) Oxygen-18 and deuterium fractionation between water and steam. J Chim Phys Physicochim Biol 68:1423–1436Google Scholar
  54. Martin RV, Sauvage B, Folkins I et al (2007) Space-based constraints on the production of nitric oxide by lightning. J Geophys Res 112. doi: 10.1029/2006JD007831
  55. Mase D (2010) A coupled modeling and observational approach to understanding the 15N and 18O of atmospheric nitrate. M.S. Thesis, Purdue UniversityGoogle Scholar
  56. Matsuhisa Y, Goldsmith JR, Clayton RN (1978) Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar. Geochim Cosmochim Acta 42:173–182Google Scholar
  57. Mauersberger K, Lammerzahl P, Krankowsky D (2001) Stratospheric ozone isotope enrichments-revisited. Geophys Res Lett 28:3155–3158Google Scholar
  58. Mauersberger K, Krankowsky D, Janssen C (2003) Oxygen isotope processes and transfer reactions. Space Sci Rev 106:265–279Google Scholar
  59. McCabe JR, Thiemens MH, Savarino J (2007) A record of ozone variability in South Pole Antarctic snow: role of nitrate oxygen isotopes. J Geophys Res 112. doi: 10.1029/2006JD007822
  60. McIlvin MR, Altabet MA (2005) Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem 77:5589–5595Google Scholar
  61. Meijer HAJ, Li WJ (1998) The use of electrolysis for accurate δ17O and δ18O isotope measurements in water. Isotopes Environ Health Stud 34:349–369Google Scholar
  62. Mentel TF, Sohn M, Wahner A (1999) Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols. Phys Chem Chem Phys 1:5451–5457Google Scholar
  63. Michalski G (2009) Purification procedure for δ15N, δ18O, Δ17O analysis of nitrate. Int J Environ Anal Chem 90:586–590Google Scholar
  64. Michalski G, Bhattacharya SK (2009) The role of symmetry in the mass independent isotope effect in ozone. Proc Natl Acad Sci U S A 106:11496–11501Google Scholar
  65. Michalski G, Xu F (2010) Isotope modeling of nitric acid formation in the atmosphere using ISO-RACM: testing the importance of nitric oxide oxidation, heterogeneous reactions, and trace gas chemistry. Atmos Chem Phys (in review)Google Scholar
  66. Michalski G, Savarino J, Böhlke JK et al (2002) Determination of the total oxygen isotopic composition of nitrate and the calibration of a Δ17O nitrate reference material. Anal Chem 74:4989–4993Google Scholar
  67. Michalski G, Scott Z, Kabiling M et al (2003) First measurements and modeling of Δ17O in atmospheric nitrate. Geophys Res Lett 30:1870. doi: 10.1029/2003GL017015 CrossRefGoogle Scholar
  68. Michalski G, Bhattacharya SK, Girsch G (In preparation) Isotope effects occuring during the NOx cycleGoogle Scholar
  69. Miller MF (2002) Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim Cosmochim Acta 66:1881–1889Google Scholar
  70. Morin S, Savarino J, Bekki S et al (2007) Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ17O) of atmospheric nitrate. Atmos Chem Phys 7:1451–1469Google Scholar
  71. Morin S, Savarino J, Frey MM et al (2008) Tracing the origin and fate of NOx in the Arctic atmosphere using stable isotopes in nitrate. Science 322:730–732Google Scholar
  72. Morin S, Savarino J, Frey MM et al (2009) Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65°S to 79°N. J Geophys Res 114. doi: 10.1029/2008JD010696
  73. Morton J, Barnes J, Schueler B et al (1990) Laboratory studies of heavy ozone. J Geophys Res 95:901–907Google Scholar
  74. Mosier A, Kroeze C, Nevison C et al (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248Google Scholar
  75. Patris N, Cliff SS, Quinn PK et al (2007) Isotopic analysis of aerosol sulfate and nitrate during ITCT-2k2: determination of different formation pathways as a function of particle size. J Geophys Res 112:D23301. doi: 10.1029/2005JD006214 CrossRefGoogle Scholar
  76. Peiro-Garcia J, Nebot-Gil I (2002) Ab initio study of the mechanism and thermochemistry of the atmospheric reaction NO+O3→NO2+O2. J Phys Chem A 106:10302–10310Google Scholar
  77. Revesz K, Böhlke JK (2002) Comparison of δ18O in nitrate by different combustion techniques. Anal Chem 74:5410–5413Google Scholar
  78. Revesz K, Böhlke JK, Yoshinari T (1997) Determination of δ18O and δ15N in nitrate. Anal Chem 69:4375–4380Google Scholar
  79. Rodhe H, Dentener F, Schulz M (2002) The global distribution of acidifying wet deposition. Environ Sci Technol 36:4382–4388Google Scholar
  80. Savarino J, Lee CCW, Thiemens MH (2000) Laboratory oxygen isotopic study of sulfur (IV) oxidation: origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth. J Geophys Res 105:29079–29088Google Scholar
  81. Savarino J, Kaiser J, Morin S et al (2007) Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica. Atmos Chem Phys 7:1925–1945Google Scholar
  82. Savarino J, Bhattacharya SK, Morin S et al (2008) The NO+O3 reaction: a triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly. J Chem Phys 128. doi: 10.1063/1.2917581 Google Scholar
  83. Silva SR, Kendall C, Wilkison DH et al (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol 228:22–36Google Scholar
  84. Spoelstra J, Schiff SL, Elgood RJ et al (2001) Tracing the sources of exported nitrate in the Turkey Lakes Watershed using 15N/14N and 18O/16O isotopic ratios. Ecosystems 4:536–544Google Scholar
  85. Stockwell WR, Kirchner F, Kuhn M et al (1997) A new mechanism for regional atmospheric chemistry modeling. J Geophys Res 102:25847–25879Google Scholar
  86. Thiemens MH, Heidenreich JE III (1983) The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219:1073–1075Google Scholar
  87. Thiemens MH, Jackson T (1990) Pressure dependency for heavy isotope enhancement in ozone formation. Geophys Res Lett 17:717–719Google Scholar
  88. Thiemens MH, Jackson T, Mauersberger K, Schueler B, Morton J (1991) Oxygen isotope fractionation in stratospheric CO2. Geophys Res Lett 18:669–672Google Scholar
  89. Thiemens MH, Savarino J, Farquhar J et al (2001) Mass-independent isotopic compositions in terrestrial and extraterrestrial solids and their applications. Acc Chem Res 34:645–652Google Scholar
  90. Tuazon EC, Atkinson R, Plum CN et al (1983) The reaction of gas-phase N2O5 with water-vapor. Geophys Res Lett 10:953–956Google Scholar
  91. Uemura R, Barkan E, Abe O et al (2010) Triple isotope composition of oxygen in atmospheric water vapor. Geophys Res Lett 37. doi: 10.1029/2009GL041960
  92. Urey HC (1947) Thermodynamic properties of isotopic substances. J Chem Soc:562–581Google Scholar
  93. Valentini JJ (1987) Mass-independent isotopic fractionation in nonadiabatic molecular-collisions. J Chem Phys 86:6757–6765Google Scholar
  94. Vuille M, Werner M, Bradley RS et al (2005) Stable isotopes in precipitation in the Asian monsoon region. J Geophys Res 110:D23108. doi: 10.1029/2005JD006022 CrossRefGoogle Scholar
  95. Wahner A, Mentel TF, Sohn M (1998) Gas-phase reaction of N2O5 with water vapor: importance of heterogeneous hydrolysis of N2O5 and surface desorption of HNO3 in a large teflon chamber. Geophys Res Lett 25:2169–2172Google Scholar
  96. Wassenaar LI (1995) Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3-. Appl Geochem 10:391–405Google Scholar
  97. Wild O, Law KS, McKenna DS et al (1996) Photochemical trajectory modeling studies of the North Atlantic region during August 1993. J Geophys Res 101:29269–29288Google Scholar
  98. Williard KWJ, DeWalle DR, Edwards PJ, Sharpe WE (2001) 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds. J Hydrol 252:174–188Google Scholar
  99. Yung YL, DeMore WB, Pinto JP (1991) Isotopic exchange between carbon dioxide and ozone via O(1D) in the stratosphere. Geophys Res Lett 18:13–16Google Scholar
  100. Yvon SA, Plane JMC, Nien CF et al (1996) Interaction between nitrogen and sulfur cycles in the polluted marine boundary layer. J Geophys Res 101:1379–1386Google Scholar
  101. Zahn A, Franz P, Bechtel C, GrooÔ JU, Röckmann T (2006) Modelling the budget of middle atmospheric water vapour isotopes. Atmos Chem Phys 6:2073–2090Google Scholar
  102. Zhang Y, Seigneur C, Seinfeld JH et al (2000) A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes. Atmos Environ 34:117–137Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Greg Michalski
    • 1
    Email author
  • S. K. Bhattacharya
    • 2
  • David F. Mase
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Physical Research LaboratoryNavrangpuraIndia

Personalised recommendations