Advertisement

Filtering of Altimetric Sea Surface Heights with a Global Approach

  • A. AlbertellaEmail author
  • X. Wang
  • R. Rummel
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 135)

Abstract

The geoid models from GRACE and soon GOCE in combination with sea surface geometry data from satellite altimetry allow to obtain a precise estimate of the absolute dynamic sea surface topography with rather high spatial resolution. However, this requires the combination of data with fundamentally different characteristics and different spatial resolutions. One of the central objectives must be to get altimetric data and the geoid spectrally consistent without loss of precision and/or resolution. Therefore it is necessary to find a representation common to the geoid model and to altimetry that allows to obtain spectral consistency by filtering the altimetric data. We try to design a filter for the altimetric data, using the spectral characteristics of the satellite gravimetric geoid, considering a “global” approach. It consists of the extension of the altimetric sea surface height so as to cover all of the Earth’s surface and the representation of the data in terms of spherical harmonic functions. The effect of the extension of the data to the land areas is studied in detail.

Keywords

Dynamic ocean topography Geoid Altimetry Spectral consistency 

References

  1. Condi, F. and C. Wunsch (2004). Measuring gravity field variability, the geoid, ocean bottom pressure fluctuations, and their dynamical implications. J. Geophys. Res., 109, 10.1029/2002JC001727.Google Scholar
  2. Ganachaud, A., C. Wunsch, M.C. Kim, and B. Tapley (1997). Combination of TOPEX/POSEIDON data with a hydrographic inversion for determination of the oceanic general circulation and its relation to geoid accuracy. Geophys. J. Int., 128(3), 708–772.CrossRefGoogle Scholar
  3. Gruber, T., (2000). Hochauflösende schwerefeldbestimmung aus kombination von terrestrischen Messungen und Satellitendaten über Kugelfunktionen. Scientific Technical Report STR00/16, GeoForschungsZentrum Potsdam.Google Scholar
  4. Jekeli, C. (1981). Alternative methods to smooth the earth’s gravity field. Rep.327, D. Sci. & Surv., Ohio State University, Columbus.Google Scholar
  5. Losch, M. and J. Schröter (2004). Estimating the circulation from hydrography and satellite altimetry in the Southern Ocean: limitations imposed by the current geoid models. Deep-Sea Res., 151, 1131–1143.Google Scholar
  6. Losch, M., B.M. Sloyan, J. Schröter, and N. Sneeuw (2002). Box inverse models, altimetry and the geoid: Problems with the omission error. J. Geophys. Res., 107, (C7) 10.1029/2001JC000855.Google Scholar
  7. Wahr, J., F. Bryan, and M. Molenaar (1998). Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103(B12), 30205–30229.Google Scholar
  8. Wang, X. (2007). Global filtering of altimetric sea surface heights. Master Thesis on TU München, Institut für Astronomische und Physikalische Geodäsie.Google Scholar
  9. Wunsch, C. and E.M. Gaposchkin (1980). On using satellite altimetry to determine the general circulation of the oceans with application to geoid improvement. Rev. Geophys., 18, 725–745.CrossRefGoogle Scholar
  10. Zenner, L. (2006). Zeitliche schwerefeldvariationen aus GRACE und hydrologiemodellen. Diplomarbeit on TU München, Institut für Astronomische und Physikalische Geodäsie.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institut für Astronomische und Physicalische Geodäsie, Technische Universität MünchenMunichGermany

Personalised recommendations