GRACE Gravity Field Determination Using the Celestial Mechanics Approach – First Results

Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 135)

Abstract

We present the first gravity field model AIUB-GRACE01S, which has been generated using the Celestial Mechanics Approach in an extended version. Inter-satellite K-band range-rate observations and GPS-derived kinematic positions are used to solve for the Earth’s gravity field parameters in a generalized orbit determination problem. Apart from the normalized spherical harmonic (SH) coefficients, arc-specific parameters like initial conditions and pseudo-stochastic pulses are set up as common parameters for all measurement types. Our first results based on 1 year of GRACE data demonstrate that the Earth’s static gravity field can be recovered with a good quality, even using EGM96 as a priori model and without accelerometer data and sophisticated background models like short-term mass variations. The use of accelerometer data and sophisticated background models will be a prerequisite for the near future, however, to further improve the inferred gravity field solutions.

Keywords

GRACE Gravity field determination hl-SST data ll-SST data Background models 

References

  1. Beutler, G. (2005) Methods of celestial mechanics. Springer, Berlin, Heidelberg, New York.Google Scholar
  2. Case, K., G. Kruizinga and S. Wu (2002). GRACE Level 1B Data Product User Handbook. D-22027, JPL Publication, Pasadena, California, USA.Google Scholar
  3. CSR ocean tide model from Schwiderski (1995). http://ftp://ftp.csr.utexas.edu/pub/tide/oldfiles/spharm_schwid+
  4. Eanes, R.J., and S.V. Bettadpur (1995). The CSR 3.0 global ocean tide model. Technical Memorandum 95-06, Center for Space Research, University of Texas, Austin.Google Scholar
  5. Flechtner, F., R. Schmidt, and U. Meyer (2006). De-aliasing of short-term atmospheric and oceanic mass variations for GRACE. In: Flury, J., R. Rummel, C. Reigber, M. Rothacher, G. Boedecker, and U. Schreiber (eds), Observation of the earth system from space. Springer, Heidelberg, pp. 83–97.CrossRefGoogle Scholar
  6. Förste, C., R. Schmidt, R. Stubenvoll, F. Flechtner, U. Meyer, R. König, U. Meyer, H. Neumayer, R. Biancale, J.M. Lemoine, S. Bruinsma, S. Loyer, F. Barthelmes, and S. Esselborn (2008). The GeoForschungsZentrum Potsdam/Groupe de Recherche de Géodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J. Geod. 82, 331–346.CrossRefGoogle Scholar
  7. Gruber, T. (2004) Validation Concepts for Gravity Field Models from Satellite Missions. In: Proceedings of Second International GOCE User Workshop “GOCE, The Geoid and Oceanography”, ESA-ESRIN, Frascati, Italy.Google Scholar
  8. Heiskanen, W.A. and H. Moritz (1967). Physical Geodesy. Freeman.Google Scholar
  9. Jäggi, A., U. Hugentobler and G. Beutler (2006). Pseudo-stochastic orbit modeling techniques for low-Earth orbiters. J. Geod., 80, 47–60.CrossRefGoogle Scholar
  10. Jäggi, A., G. Beutler, L. Prange, R. Dach, and L. Mervart (2008). Assessment of GPS observables for Gravity Field Recovery from GRACE. In: Sideris, M.G. (ed), Observing our Changing Earth. Springer, Heidelberg, pp. 113–120.CrossRefGoogle Scholar
  11. Lemoine, F.G., D.E. Smith, L. Kunz, R. Smith, E.C. Pavlis, N.K. Pavlis, S.M. Klosko, D.S. Chinn, M.H. Torrence, R.G. Williamson, C.M. Cox, K.E. Rachlin, Y.M. Wang, S.C. Kenyon, R. Salman, R. Trimmer, R.H. Rapp, and R.S. Nerem (1997). The development of the NASA GSFC and NIMA joint geopotential model. In: Segawa, J., H. Fujimoto, and S. Okubo (eds), IAG Symposia: Gravity, Geoid and Marine Geodesy. Springer-Verlag, New York, pp. 461–469.Google Scholar
  12. Mayer-Gürr, T. (2008). Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Schriftenreihe 9, Institute for Geodesy and Geoinformation, University of Bonn, Germany.Google Scholar
  13. Prange, L., A. Jäggi, G. Beutler, R. Dach, L. Mervart (2008). Gravity Field Determination at the AIUB – the Celestial Mechanics Approach. In: Sideris, M.G. (ed), Observing our Changing Earth. Springer, Heidelberg, pp. 353–360.CrossRefGoogle Scholar
  14. Ray, R.D. (1999). A global ocean tide model from TOPEX/Poseidon altimetry: GOT99.2. NASA Tech Memo 209478, Goddard Space Flight Center, Greenbelt.Google Scholar
  15. Tapley, B.D., S. Bettadpur, J.C. Ries, P.F. Thompson, and M. Watkins (2004). GRACE measurements of mass variability in the Earth system. Science, 305(5683).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Astronomical InstituteUniversity of BernBernSwitzerland
  2. 2.Institute of Advanced GeodesyCzech Technical UniversityPragueCzech Republic

Personalised recommendations