Advertisement

Approximation Algorithms for the Firefighter Problem: Cuts over Time and Submodularity

  • Elliot Anshelevich
  • Deeparnab Chakrabarty
  • Ameya Hate
  • Chaitanya Swamy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5878)

Abstract

We provide approximation algorithms for several variants of the Firefighter problem on general graphs. The Firefighter problem models the case where an infection or another diffusive process (such as an idea, a computer virus, or a fire) is spreading through a network, and our goal is to stop this infection by using targeted vaccinations. Specifically, we are allowed to vaccinate at most B nodes per time-step (for some budget B), with the goal of minimizing the effect of the infection. The difficulty of this problem comes from its temporal component, since we must choose nodes to vaccinate at every time-step while the infection is spreading through the network, leading to notions of “cuts over time”.

We consider two versions of the Firefighter problem: a “non-spreading” model, where vaccinating a node means only that this node cannot be infected; and a “spreading” model where the vaccination itself is an infectious process, such as in the case where the infection is a harmful idea, and the vaccine to it is another infectious idea. We give complexity and approximation results for problems on both models.

Keywords

Approximation Algorithm Greedy Algorithm Layered Graph Full Version Spreading Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Full version can be found at www.cs.rpi.edu/~eanshel/pubs.html
  2. 2.
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  3. 3.
    Aspnes, J., Chang, K., Yamposlkiy, A.: Inoculation strategies for victims of viruses and the sum-of-squares partition problem. In: Proc. 16th ACM SODA (2005)Google Scholar
  4. 4.
    Bailey, N.: The Mathematical Theory of Infectious Diseases and its Applications. Hafner Press (1975)Google Scholar
  5. 5.
    Barabasi, A., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272 (1999)Google Scholar
  6. 6.
    Calinescu, G., Chekuri, C., Pal, M., Vondrak, J.: Maximizing a Monotone Submodular Function subject to a Matroid Constraint. In: Proc. 12th IPCO (2007)Google Scholar
  7. 7.
    Chalermsook, P., Chuzhoy, J.: Resource Minimization for Fire Containment. To appear in Proc. ACM SODA (2010)Google Scholar
  8. 8.
    Crosby, S., Finbow, A., Hartnell, B., Moussi, R., Patterson, K., Wattar, D.: Designing Fire Resistant Graphs. Congr. Numerantium 173 (2005)Google Scholar
  9. 9.
    Develin, M., Hartke, S.G.: Fire Containment in grids of dimension three or higher. Discrete Applied Mathematics 155(17) (2007)Google Scholar
  10. 10.
    Dezső, Z., Barabási, A.: Halting viruses in scale-free networks. Physical Review E 65 (2002)Google Scholar
  11. 11.
    Dreyer Jr., P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Applied Mathematics 157(7) (2009)Google Scholar
  12. 12.
    Engelberg, R., Könemann, J., Leonardi, S., Naor, J(S.): Cut problems in graphs with a budget constraint. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 435–446. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Eubank, S., Kumar, V., Marathe, M., Srinivasan, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: Proc. 15th ACM SODA (2004)Google Scholar
  14. 14.
    Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45 (1998)Google Scholar
  15. 15.
    Finbow, S., King, A.D., MacGillivray, G., Rizzi, R.: The Fire fighter problem on graphs of maximum degree three. Discrete Mathematics 307 (2007)Google Scholar
  16. 16.
    Finbow, S., MacGillivray, G.: The Firefighter Problem: A survey of results, directions and questions (Manuscript) (2007)Google Scholar
  17. 17.
    Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions - II. Math. Prog. Study 8 (1978)Google Scholar
  18. 18.
    Fogarty, P.: Catching Fire on Grids, M.Sc. Thesis, Department of Mathematics, University of Vermont (2003)Google Scholar
  19. 19.
    Giakkoupis, G., Gionis, A., Terzi, E., Tsaparas, P.: Models and algorithms for network immunization. Technical Report C-2005-75, Department of Computer Science, University of Helsinki (2005)Google Scholar
  20. 20.
    Hartnell, B.L.: Firefighter! An application of domination. Presentation. In: 25th Manitoba Conference on Combinatorial Mathematics and Computing, University of Manitoba in Winnipeg, Canada (1995)Google Scholar
  21. 21.
    Hartnell, B., Li, Q.: Firefighting on trees: How bad is the greedy algorithm? Congr. Numer. 145 (2000)Google Scholar
  22. 22.
    Hayrapetyan, A., Kempe, D., Pál, M., Svitkina, Z.: Unbalanced graph cuts. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 191–202. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    King, A., MacGillivray, G.: The Firefighter Problem For Cubic Graphs. Discrete Mathematics 307 (2007)Google Scholar
  25. 25.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proc. 41st IEEE FOCS (2000)Google Scholar
  26. 26.
    Leizhen, C., Verbin, E., Yang, L.: Firefighting on trees (1 − 1/e)–approximation, fixed parameter tractability and a subexponential algorithm. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269. Springer, Heidelberg (2008)Google Scholar
  27. 27.
    Leizhen, C., Weifan, W.: The Surviving Rate of a Graph. To appear in SIAM Journal on Discrete Mathematics (2009)Google Scholar
  28. 28.
    MacGillivray, G., Wang, P.: On The Firefighter Problem. JCMCC, 47 (2003)Google Scholar
  29. 29.
    Nowak, M., May, R.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  30. 30.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and sub-constant error-probability PCP characterization of NP. In: Proc. 29th ACM STOC (1997)Google Scholar
  31. 31.
    Wang, P., Moeller, S.: Fire Control on graphs. J. Combin. Math. Combin. Comput. 41 (2002)Google Scholar
  32. 32.
    Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Elliot Anshelevich
    • 1
  • Deeparnab Chakrabarty
    • 2
  • Ameya Hate
    • 1
  • Chaitanya Swamy
    • 2
  1. 1.Department of Computer ScienceRensselaer Polytechnic Institute 
  2. 2.Dept. of Combinatorics & OptimizationUniversity of Waterloo 

Personalised recommendations