Succinct Greedy Geometric Routing in the Euclidean Plane

  • Michael T. Goodrich
  • Darren Strash
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5878)

Abstract

We show that greedy geometric routing schemes exist for the Euclidean metric in R2, for 3-connected planar graphs, with coordinates that can be represented succinctly, that is, with O(logn) bits, where n is the number of vertices in the graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 26–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Dhandapani, R.: Greedy drawings of triangulations. In: Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 102–111. SIAM, Philadelphia (2008)Google Scholar
  3. 3.
    Eppstein, D., Goodrich, M.T.: Succinct greedy graph drawing in the hyperbolic plane. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 14–25. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Knuth, D.E.: Optimum binary search trees. Acta Informatica 1, 14–25 (1971)MATHCrossRefGoogle Scholar
  5. 5.
    Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 337–346. IEEE Press, Los Alamitos (2008)Google Scholar
  6. 6.
    Lillis, K.M., Pemmaraju, S.V.: On the efficiency of a local iterative algorithm to compute delaunay realizations. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 69–86. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Muhammad, R.B.: A distributed geometric routing algorithm for ad hoc wireless networks. In: Proceedings of the 4th International Conference on Information Technology (ITNG 2007), pp. 961–963. IEEE Press, Los Alamitos (2007)CrossRefGoogle Scholar
  8. 8.
    Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theoretical Computer Science 344(1), 3–14 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26(3), 362–391 (1983)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael T. Goodrich
    • 1
  • Darren Strash
    • 1
  1. 1.Computer Science DepartmentUniversity of CaliforniaIrvineUSA

Personalised recommendations