A Self-stabilizing and Local Delaunay Graph Construction

  • Riko Jacob
  • Stephan Ritscher
  • Christian Scheideler
  • Stefan Schmid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5878)

Abstract

This paper studies the construction of self-stabilizing topologies for distributed systems. While recent research has focused on chain topologies where nodes need to be linearized with respect to their identifiers, we go a step further and explore a natural 2-dimensional generalization. In particular, we present a local self-stabilizing algorithm that constructs a Delaunay graph from any initial connected topology and in a distributed manner. This algorithm terminates in time O(n3) in the worst-case. We believe that such self-stabilizing Delaunay networks have interesting applications and give insights into the necessary geometric reasoning that is required for higher-dimensional linearization problems.

References

  1. 1.
    Awerbuch, B., Varghese, G.: Distributed program checking: A paradigm for building self-stabilizing distributed protocols. In: Proc. FOCS, pp. 258–267 (1991)Google Scholar
  2. 2.
    Berg, M.d., Cheong, O., Kreveld, M.v., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008)MATHGoogle Scholar
  3. 3.
    Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic skip list. In: Proc. SSS (2008)Google Scholar
  4. 4.
    Dijkstra, E.: Self-stabilization in spite of distributed control. Communications of the ACM 17, 643–644 (1974)MATHCrossRefGoogle Scholar
  5. 5.
    Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems. Chicago Journal of Theoretical Computer Science 4, 1–40 (1997)MathSciNetGoogle Scholar
  6. 6.
    Gafni, E.M., Bertsekas, D.P.: Asymptotic optimality of shortest path routing algorithms. IEEE Trans. Inf. Theor. 33(1), 83–90 (1987)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Brief announcement: On the time complexity of distributed topological self-stabilization. In: Proc. SSS (2009)Google Scholar
  8. 8.
    Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: Proc. PODC (2009)Google Scholar
  9. 9.
    Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: A self-stabilizing and local delaunay graph construction. Tech. Report TR-TI-09-307, University of Paderborn (2009)Google Scholar
  10. 10.
    Li, X.-Y., Calinescu, G., Wan, P.-J.: Distributed construction of planar spanner and routing for ad hoc wireless networks. In: Proc. INFOCOM (2002)Google Scholar
  11. 11.
    Onus, M., Richa, A., Scheideler, C.: Linearization: Locally self-stabilizing sorting in graphs. In: Proc. ALENEX (2007)Google Scholar
  12. 12.
    Stojmenovic, I.: Handbook of Wireless Networks and Mobile Computing. Wiley, Chichester (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Riko Jacob
    • 1
  • Stephan Ritscher
    • 1
  • Christian Scheideler
    • 2
  • Stefan Schmid
    • 2
  1. 1.Institut für InformatikTechnische Universität MünchenGarchingGermany
  2. 2.Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations