The Directed Hausdorff Distance between Imprecise Point Sets

  • Christian Knauer
  • Maarten Löffler
  • Marc Scherfenberg
  • Thomas Wolle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5878)


We consider the directed Hausdorff distance between point sets in the plane, where one or both point sets consist of imprecise points. An imprecise point is modelled by a disc given by its centre and a radius. The actual position of an imprecise point may be anywhere within its disc. Due to the direction of the Hausdorff Distance and whether its tight upper or lower bound is computed there are several cases to consider. For every case we either show that the computation is NP-hard or we present an algorithm with a polynomial running time. Further we give several approximation algorithms for the hard cases and show that one of them cannot be approximated better than with factor 3, unless P=NP.


Voronoi Diagram Hausdorff Distance Optimal Placement Planar Embedding Voronoi Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alt, H., Behrends, B., Blömer, J.: Approximate matching of polygonal shapes. Ann. Math. Artif. Intell. 13, 251–266 (1995)zbMATHCrossRefGoogle Scholar
  2. 2.
    Alt, H., Guibas, L.: Discrete Geometric Shapes: Matching, Interpolation, and Approximation - A Survey. In: Handbook on Computational Geometry, pp. 251–265 (1995)Google Scholar
  3. 3.
    Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Proc. 20th Ann. ACM Symp. on Theory of Comp., pp. 434–444 (1988)Google Scholar
  4. 4.
    Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Practical methods for approximate geometric pattern matching under rigid motion. In: Proc. 10th Annu. ACM Sympos. Comput. Geom, pp. 103–112 (1994)Google Scholar
  6. 6.
    Goodrich, M.T., Snoeyink, J.: Stabbing parallel segments with a convex polygon. Comput. Vision Graph. Image Process. 49, 152–170 (1990)zbMATHCrossRefGoogle Scholar
  7. 7.
    Guibas, L.J., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms from imprecise computations. In: Proc. 5th Annu. ACM Sympos. Comput. Geom, pp. 208–217 (1989)Google Scholar
  8. 8.
    Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congruence. Comput. Geom. Theory Appl. 4, 137–156 (1994)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets (Preprint, 2009),
  10. 10.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mukhopadhyay, A., Greene, E., Rao, S.V.: On intersecting a set of isothetic line segments with a convex polygon of minimum area. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part I. LNCS, vol. 4705, pp. 41–54. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Mukhopadhyay, A., Kumar, C., Greene, E., Bhattacharya, B.: On intersecting a set of parallel line segments with a convex polygon of minimum area. Inf. Proc. Let. 105(2), 58–64 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Nagai, T., Tokura, N.: Tight Error Bounds of Geometric Problems on Convex Objects with Imprecise Coordinates. In: Japanese Conference on Discrete and Computational Geometry, pp. 252–263 (2000)Google Scholar
  14. 14.
    van Kreveld, M., Löffler, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 446–457. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Knauer
    • 1
  • Maarten Löffler
    • 2
  • Marc Scherfenberg
    • 1
  • Thomas Wolle
    • 3
  1. 1.Institute of Computer ScienceFreie Universität BerlinGermany
  2. 2.Dep. of Information and Computing SciencesUtrecht UniversityThe Netherlands
  3. 3.NICTA SydneyAustralia

Personalised recommendations