Editing Graphs into Disjoint Unions of Dense Clusters

  • Jiong Guo
  • Iyad A. Kanj
  • Christian Komusiewicz
  • Johannes Uhlmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5878)


In the Π-Cluster Editing problem, one is given an undirected graph G, a density measure Π, and an integer k ≥ 0, and needs to decide whether it is possible to transform G by editing (deleting and inserting) at most k edges into a dense cluster graph. Herein, a dense cluster graph is a graph in which every connected component K = (V K ,E K ) satisfies Π. The well-studied Cluster Editing problem is a special case of this problem with Π: =“being a clique”. In this work, we consider three other density measures that generalize cliques: 1) having at most s missing edges (s-defective cliques), 2) having average degree at least |V K | − s (average-s-plexes), and 3) having average degree at least μ· (|V K | − 1) (μ-cliques), where s and μ are a fixed integer and a fixed rational number, respectively. We first show that the Π-Cluster Editing problem is NP-complete for all three density measures. Then, we study the fixed-parameter tractability of the three clustering problems, showing that the first two problems are fixed-parameter tractable with respect to the parameter (s,k) and that the third problem is W[1]-hard with respect to the parameter k for 0 < μ< 1.


Disjoint Union Average Degree Edge Weight Dense Cluster Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-3), 89–113 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: Parameterized algorithms for cluster editing. Theor. Comput. Sci. (to appear, 2009)Google Scholar
  4. 4.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chesler, E.J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H.C., Mountz, J.D., Baldwin, N.E., Langston, M.A., Threadgill, D.W., Manly, K.F., Williams, R.W.: Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genetics 37(3), 233–242 (2005)CrossRefGoogle Scholar
  6. 6.
    Dehne, F.K.H.A., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for Cluster Editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  10. 10.
    Greenwell, D.L., Hemminger, R.L., Klerlein, J.B.: Forbidden subgraphs. In: Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 389–394 (1973)Google Scholar
  11. 11.
    Guo, J.: A more effective linear kernelization for Cluster Editing. Theor. Comput. Sci. 410(8-10), 718–726 (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: s-plex editing. In: Goldberg, A., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 226–239. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Kosub, S.: Local density. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 112–142. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. Journal of Mathematical Sociology 6, 139–154 (1978)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1-2), 173–182 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 260–273. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Yu, H., Paccanaro, A., Trifonov, V., Gerstein, M.: Predicting interactions in protein networks by completing defective cliques. Bioinformatics 22(7), 823–829 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jiong Guo
    • 1
  • Iyad A. Kanj
    • 2
  • Christian Komusiewicz
    • 3
  • Johannes Uhlmann
    • 3
  1. 1.Universität des SaarlandesSaarbrückenGermany
  2. 2.School of ComputingDePaul UniversityChicagoUSA
  3. 3.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations